European Journal of Forest Research

, Volume 123, Issue 1, pp 13–28

Microclimate within beech stands—part II: thermal conditions

Original Paper

Abstract

Within the framework of an interdisciplinary project on the effects of climate and forest management on beech-dominated deciduous forests (Swabian Jura, south-western Germany), forest meteorological investigations are carried out to analyse the influences of exposure and canopy density on the microclimate within various beech stands (Fagus sylvatica L.). This second paper of the series “Microclimate within beech stands” focuses on the thermal conditions that exist mainly in the near-surface layer at different test plots. They were analysed by air temperature, Ta, (at 1.5 m a.g.l) and soil temperature, Ts, at six depths measured continuously in the period 1999–2003. The main results can be summarized as follows. (1) The thermal situation within the beech stands described by Ta depended primarily on the turbulent air-mass exchange conditions which were based on the slope-specific energy balance of the forest floor and advective heat fluxes. (2) The thermal situation within the soil described by Ts at 3 and 20 cm depth was governed by the molecular heat transport. Therefore, the heating and cooling rates of Ts were always lower than for Ta. Higher Ta and Ts values for the test plots on the SW slope showed that the thermal conditions within the beech stands depended primarily on the exposure. (3) Based on slope-specific differences of daily extremes of Ta and Ts at 3 cm depth between the silviculturally treated and control plots, the influence of the more pronounced height growth of the understorey vegetation under the near-surface thermal conditions could be clearly verified for the NE slope.

Keywords

Fagus sylvatica L. Air temperature Soil temperature Exposure Canopy density South-western Germany 

Abbreviations

PAR

Photosynthetically active radiation

PAI

Plant area index

LAI

Leaf area index

References

  1. Aussenac G (2000) Interactions between forest stands and microclimate: ecophysiological aspects and consequences for silviculture. Ann For Sci 57:287–301CrossRefGoogle Scholar
  2. Carlson DW, Groot A (1997) Microclimate of clear-cut, forest interior, and small openings in trembling aspen forest. Agric For Meteorol 87:313–329CrossRefGoogle Scholar
  3. Chen J, Franklin JF (1997) Growing season microclimate variability within an old-growth Douglas-fir forest. Clim Res 8:21–34Google Scholar
  4. Chen J, Franklin JF, Spies TA (1993) Contrasting microclimates among clearcut, edge, and interior of old-growth Douglas-fir forest. Agric For Meteorol 63:219–237CrossRefGoogle Scholar
  5. Chen J, Saunders SC, Crow TR, Naiman RJ, Brosofske KD, Mroz GD, Brookshire BL, Franklin JF (1999) Microclimate in forest ecosystem and landscape ecology. Bioscience 49:288–297Google Scholar
  6. Foken T (2003) Angewandte Meteorologie. Springer, Berlin Heidelberg New YorkGoogle Scholar
  7. Fotelli MN, Rennenberg H, Holst T, Mayer H, Geßler A (2003) Carbon isotope composition of various tissues of beech (Fagus sylvatica) regeneration is indicative of recent environmental conditions within the forest understorey. New Phytol 159:229–244CrossRefGoogle Scholar
  8. de Freitas CR, Enright NJ (1995) Microclimatic differences between and within canopy gaps in a temperate rainforest. Int J Biometeorol 38:188–193Google Scholar
  9. Frey BR, Lieffers VJ, Munson AD, Blenis PV (2003) The influence of partial harvesting and forest floor disturbance on nutrient availability and understorey vegetation in boreal mixed forests. Can J For Res 33:1180–1188CrossRefGoogle Scholar
  10. Freytag C (1988) Atmosphärische Grenzschicht in einem Gebirgstal bei Berg- und Talwind. Wiss Mitt Meteor Inst Univ München No 60Google Scholar
  11. Friedland AJ, Boyce RL, Vostral CB, Herrick GT (2003) Winter and early spring microclimate within a mid-elevation conifer forest canopy. Agric For Meteorol 115:195–200CrossRefGoogle Scholar
  12. Geiger R (1961) Das Klima der bodennahen Luftschicht. Vieweg-Verlag, BraunschweigGoogle Scholar
  13. Geßler A, Schrempp S, Matzarakis A, Mayer H, Rennenberg H, Adams MA (2001) Radiation modifies the effect of water availability on the carbon isotope composition of beech (Fagus sylvatica). New Phytol 150:653–664CrossRefGoogle Scholar
  14. Grimmond CSB, Robeson SM, Schoof JT (2000) Spatial variability of micro-climate conditions within a mid-latitude deciduous forest. Clim Res 15:137–149Google Scholar
  15. Hanewinkel M (2001) Economic aspects of the transformation from even-aged pure stands of Norway spruce to uneven-aged mixed stands of Norway spruce and beech. For Ecol Manage 151:181–193CrossRefGoogle Scholar
  16. Hasenauer H, Merganicova K, Petritsch R, Pietsch SA, Thornton PE (2003) Validating daily climate interpolations over complex terrain in Austria. Agric For Meteorol 119:87–107CrossRefGoogle Scholar
  17. Hauser S (2003) Dynamik hochaufgelöster radialer Schaftveränderungen und des Dickenwachstums bei Buchen (Fagus sylvatica L.) der Schwäbischen Alb unter dem Einfluss von Witterung und Bewirtschaftung. PhD Thesis, Fak Forst-Umweltwiss Univ FreiburgGoogle Scholar
  18. Heidenfelder A (2002) Einfluß von Klima und Bewirtschaftung auf am N-Umsatz beteiligte mikrobielle Prozesse in Waldböden. PhD Thesis, Forstwiss Fak Univ FreiburgGoogle Scholar
  19. Holst T, Rost J, Schindler D, Matzarakis A, Mayer H (2000) Mikroklimatische Untersuchungen in südwestdeutschen Buchenbeständen. Rep Meteor Inst Univ Freiburg No. 5, 123–135Google Scholar
  20. Holst T, Matzarakis A, Mayer H, Rost J, Schindler D (2001) Mikroklima in Buchenbeständen auf gegenüberliegenden Hängen in der Schwäbischen Alb. In: Beitr zur 1. Deutsch-Österreichisch-Schweizerischen Meteorologentagung Wien, September 2001. Österreich Beitr Meteor Geophys Heft 27, Session 7a, pp 1–18Google Scholar
  21. Holst T, Hauser S, Kirchgäßner A, Matzarakis A, Mayer H, Schindler D (2004) Measuring and modelling plant area index in beech stands. Int J Biometeorol (in press)Google Scholar
  22. Hurst A (1988) Wirkung von Bodenabkühlungen auf Wasserbilanz und Wachstum von Buchen (Fagus sylvatica L.). Mitt Eidg Anst Forstl Versuchswes, vol 64Google Scholar
  23. Keitel C, Adams MA, Holst T, Matzarakis A, Mayer H, Rennenberg H, Geßler A (2003) Carbon and oxygen isotope composition of organic compounds in the phloem sap provides a short-term measure for stomatal conductance of European beech (Fagus sylvatica L.). Plant Cell Environ 26:1157–1168CrossRefGoogle Scholar
  24. Kenk G, Guehne S (2001) Management of transformation in central Europe. For Ecol Manage 151:107–119CrossRefGoogle Scholar
  25. Kirchgäßner A (2001) Phänoklimatologie von Buchenwäldern im Südwesten der Schwäbischen Alb. Rep Meteor Inst Univ Freiburg No. 7Google Scholar
  26. Kraus H (2000) Die Atmosphäre der Erde—Eine Einführung in die Meteorologie. Vieweg-Verlag, BraunschweigGoogle Scholar
  27. Lee R (1978) Forest microclimatology. Columbia University Press, New YorkGoogle Scholar
  28. Mayer H (1979) Mikroklimatische Untersuchungen im ostbayerischen Bergmischwald. Arch Met Geoph Biokl Ser. B, 27:247–262Google Scholar
  29. Mayer H, Holst T, Schindler D (2002) Mikroklima in Buchenbeständen—Teil I: Photosynthetisch aktive Strahlung. Forstwiss Centralbl 121:301–321CrossRefGoogle Scholar
  30. Morecroft MD, Taylor ME, Oliver HR (1998) Air and soil microclimates of deciduous woodland compared to an open site. Agric For Meteorol 90:141–156CrossRefGoogle Scholar
  31. Potter BE, Teclaw RM, Zasada JC (2001) The impact of forest structure on near-ground temperatures during two years of contrasting temperature extremes. Agric For Meteorol 106:331–336CrossRefGoogle Scholar
  32. Prévost M, Pothier D (2003) Partial cuts in a trembling aspen-conifer stand: effects on microenvironmental conditions and regeneration dynamics. Can J For Res 33:1–15CrossRefGoogle Scholar
  33. Rennenberg H (2001) Buchendominierte Laubwälder unter dem Einfluss von Klima und Bewirtschaftung: Ökologische, waldbauliche und sozialwissenschaftliche Analysen. Abschlussbericht des Sonderforschungsbereiches 433. Univ FreiburgGoogle Scholar
  34. Stull RB (1988) An introduction to boundary layer meteorology. Kluwer, DordrechtGoogle Scholar
  35. van Gorsel E, Christen A, Feigenwinter C, Parlow E, Vogt R (2003) Daytime turbulence statistics above a steep forested slope. Boundary-Layer Meteorol 109:311–329Google Scholar
  36. Weisberg PJ, Hadorn C, Bugmann H (2003) Predicting understorey vegetation cover from overstorey attributes in two temperate mountain forests. Forstwiss Centralbl 122:273–286CrossRefGoogle Scholar
  37. Xia Y, Winterhalter M, Fabian P (1999) A model to interpolate monthly mean climatological data at Bavarian forest climate stations. Theor Appl Climatol 64:27–38CrossRefGoogle Scholar
  38. Xia Y, Fabian P, Winterhalter M, Zhao M (2001) Forest climatology: estimation and use of daily climatological data for Bavaria, Germany. Agric For Meteorol 106:87–103CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  1. 1.Meteorological InstituteUniversity of FreiburgFreiburgGermany

Personalised recommendations