Metconazole on Inhibition of Gibberellin Biosynthesis and Flowering Management in Mango

  • Ítalo Herbert Lucena CavalcanteEmail author
  • Gilberto José Nogueira e Silva
  • Jeferson Antônio Cavacini
  • Renata Araújo e Amariz
  • Sérgio Tonetto de Freitas
  • Kellem Ângela Oliveira de Sousa
  • Marcelle Almeida da Silva
  • Jenilton Gomes da Cunha
Original Article


Gibberellins have been shown to suppress floral development in mango, thus farmers have used growth retardants, especially paclobutrazol, to inhibit gibberellin biosynthesis, but in many countries such as Brazil, this is the unique registered molecule, which affects sustainability of the mango industry. The objective of this study was to evaluate the effect of metconazole on gibberellin biosynthesis inhibition and carbohydrate accumulation in ‘Palmer’ mango grown in semi-arid conditions. The experiment was accomplished from 2015 to 2017 in an experimental orchard located in Petrolina, Pernambuco, Brazil. The experimental design were randomized blocks with five treatments, five replications and three plants per replication. The treatments consisted of metconazole (0, 0.7, 1.0 or 1.3 g) and paclobutrazol (1.0 g) application per linear meter of plant canopy. According to the results, metconazole efficiently inhibits gibberellin biosynthesis in mango, but it affects AG1 + AG3 (Gibberellic Acid) and AG4 differently. Therefore, metconazole can potentially be used on mango flowering management, but further studies are required to determine specific management practices.


Mangifera indica L Plant growth regulator Flowering management Gibberellin inhibition 

Metconazol zur Hemmung der Gibberellin-Biosynthese und zur Steuerung der generativen Phase bei Mango


Mangifera indica L Pflanzenwachstumsregulator Blütenmanagement Gibberellinhemmung Generative Phase 



The authors gratefully thank to BASF® for granting the support necessary to carry out the research, and to Francisco Pinto farm (Petrolina, Pernambuco, Brazil) for the structural support necessary to accomplish the experiments.

Conflict of interest

Í.H.L. Cavalcante, G.J. Nogueira e Silva, J.A. Cavacini, R. Araújo e Amariz, S. Tonetto de Freitas, K.Â. Oliveira de Sousa, M. Almeida da Silva and J. Gomes da Cunha declare that they have no competing interests.


  1. Abdel Rahim AOS, Elamin OM, Bangerth FK (2011) Effects of paclobutrazol (PBZ) on floral induction and associated hormonal and metabolic changes of biennially bearing mango (Mangifera indica L.) cultivars during off year. J Agric Biol Sci 6:55–67Google Scholar
  2. Aliceweb, Sistema de Análise das Informações de Comércio Exterior (2016) Embrapa. html. Accessed 20 Dec 2017Google Scholar
  3. Barbosa LFS, Cavalcante ÍHL, Lima AMN (2016) Desordem fisiológica e produtividade de mangueira cv. Palmer associada à nutrição de boro. Rev Bras Frutic 38:1–9. CrossRefGoogle Scholar
  4. Berry PM, Spink JH (2009) Understanding the effect of a triazole with anti-gibberellin activity on the growth and yield of oilseed rape (Brassica napus). J Agr Sci 147:273–285. CrossRefGoogle Scholar
  5. Carneiro MA, Lima AMN, Cavalcante IHL, Cunha JC, Rodrigues MS, Lessa TBS (2017) Soil salinity and yield of mango fertigated with potassium sources. Rev Bras Eng Agric Ambient 21:310–316. CrossRefGoogle Scholar
  6. Davenport TL (2009) Reproductive physiology. In: Litz RE (ed) The mango: botany, production and uses, 2nd edn. CAB International, Wallingford, pp 97–169CrossRefGoogle Scholar
  7. Davenport TL, Pearce DW, Rood SB (2001) Correlation of endogenous gibberellic acid with initiation of mango shoot growth. J Plant Growth Regul 20:308–315. CrossRefGoogle Scholar
  8. Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356. CrossRefGoogle Scholar
  9. El-Hendawy SE, Hu Y, Schimidhalter U (2005) Growth, ion content, gas exchange, and water relations of wheat genotypes differing in salt tolerances. Aust J Agric Res 56:123–134. CrossRefGoogle Scholar
  10. FAO, Food and Agriculture Organization of the United Nations (2017) FAOSTAT. http: Accessed 14 Dec 2017Google Scholar
  11. Genú PJC, Pinto ACQ (2002) A cultura da mangueira. Embrapa Informação Tecnológica, BrasíliaGoogle Scholar
  12. Hedden P, Thomas SG (2016) The gibberellins. Wiley-Blackwell, Chichester (Annual Plant Reviews, v. 49)Google Scholar
  13. Kumar M, Ponnuswami V, Jeya Kumar P, Saraswathi S (2014) Influence of season affecting flowering and physiological parameters in mango. Sci Res Essays 9:1–6. CrossRefGoogle Scholar
  14. Macías JM, Pournavab RF, Reyes-Valdés MH, Benavides-Mendoza A (2014) Development of a rapid and efficient liquid chromatography method for determination of gibberellin A4 in plant tissue, with solid phase extraction for purification and quantification. Am J Plant Sci 5:573–583. CrossRefGoogle Scholar
  15. Prasad SR, Reddy YTN, Upreti KK, Rajeshwara AN (2014) Studies on changes in carbohydrate metabolism in regular bearing and “off” season bearing cultivars of mango (Mangifera indica L.) during flowering. Int J Fruit Sci 14:437–459. CrossRefGoogle Scholar
  16. Rademacher W (2000) Growth retardants: effects on gibberellin biosynthesis and other metabolic pathways. Annu Rev Plant Physiol Plant Mol Biol 51:501–531. CrossRefPubMedGoogle Scholar
  17. Rademacher W (2015) Plant growth regulators: backgrounds and uses in plant production. J Plant Growth Regul 34:845–872. CrossRefGoogle Scholar
  18. Rahim AAOS, Elamin OM, Bangerth FK (2008) Effects of paclobutrazol on floral induction and correlated phyto-hormonal changes in grafted seedlings of different mango (Mangifera indica L.) cultivars. J Agric Res 11:111–120Google Scholar
  19. Ramírez F, Davenport T (2010) Mango (Mangifera indica L.) flowering physiology. Sci Hortic 126:65–72. CrossRefGoogle Scholar
  20. Ramírez F, Davenport TL, Fischer G, Pinzón JCA, Ulrichs C (2014) Mango trees have no distinct phenology: the case of mangoes in the tropics. Sci Hortic 168:258–266. CrossRefGoogle Scholar
  21. Sandip M, Makwana AN, Barad AV, Nawade BD (2015) Physiology of flowering—the case of mango. Int J Appl Res 1:1008–1012Google Scholar
  22. Sherson SM, Alford HL, Forbes SM, Wallace G, Smith SM (2003) Roles of cell wall invertases and monosaccharide transporters in the growth and development of Arabidopsis. J Exp Bot 54:525–531. CrossRefPubMedGoogle Scholar
  23. Singh SK, Singh SK, Charma RR (2009) Endogenous phytohormones after pruning in three mango cultivars planted under high density. Indian J Plant Physiol 14:392–396Google Scholar
  24. Upreti KK, Reddy YTN, Shivu Prasad S, Bindu GV, Jayaram HL, Rajan S (2013) Hormonal changes in response to paclobutrazol induced early flowering in mango cv. Totapuri. Sci Hortic 150:414–418. CrossRefGoogle Scholar
  25. Urban L, Lu P, Thibaud R (2004) Inhibitory effect of flowering and early fruit growth on leaf photosynthesis in mango. Tree Physiol 24:387–399CrossRefGoogle Scholar
  26. Urban L, Montpied P, Normand F (2006) Season effects on leaf nitrogen partitioning and photosynthetic water use efficiency in mango. J Plant Physiol 163:48–57. CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2019

Authors and Affiliations

  • Ítalo Herbert Lucena Cavalcante
    • 1
    • 5
    Email author
  • Gilberto José Nogueira e Silva
    • 2
  • Jeferson Antônio Cavacini
    • 1
  • Renata Araújo e Amariz
    • 1
  • Sérgio Tonetto de Freitas
    • 3
  • Kellem Ângela Oliveira de Sousa
    • 4
  • Marcelle Almeida da Silva
    • 1
  • Jenilton Gomes da Cunha
    • 1
  1. 1.Center of Agrarian SciencesFederal University of São Francisco ValleyPetrolina, PernambucoBrazil
  2. 2.Bioservice consultingPetrolinaBrazil
  3. 3.Brazilian Agricultural Research CorporationPetrolinaBrazil
  4. 4.Federal University of PiauíBom JesusBrazil
  5. 5.National Council for Scientific and Technological Development (CNPq)BrasíliaBrazil

Personalised recommendations