, Volume 60, Supplement 1, pp 61–69 | Cite as

Determining the Internal Connection Ratios by MRI and Their Effects on Grafted Rooted Vine Growing Features of cvs. Merlot and Syrah

  • İlknur KorkutalEmail author
  • Elman Bahar
  • Ayse Guldal Ozdemir
Original Article


This experiment was carried out to determine the percentage of internal connection between rootstock and scion in graft union with nondestructive and noninvasive MRI (Magnetic Resonance Imaging) method and to follow performance status according to internal connection ratios of the grafted rooted vines after planting to vineyard field. Research was established in a factorial randomized block design and carried out with cvs. Merlot and Syrah grafted onto 110 R rootstock and 4 different internal (MRI) connection levels in 3 replications. The percentages of grafted rooted vine internal determination by MRI by four sides (13.75%) in graft union were found to be very low than others at the pre-planting stage. An increase in the internal connection ratio in the majority of the grafted rooted vines was determined after the vegetative growth phase. Therefore, the internal connection ratios of the graft union of rooted vines of cvs. Merlot and Syrah varieties showed a tendency to increase during the second year of development. Again in both cultivars, loss rate of grafted rooted vines showed a decreasing tendency depending on increase of internal connection ratio of graft union. As a result, in case of decrease of MRI costs, it is thought that grafted rooted vine producers may have the opportunity to supply better quality seedlings to vine growers using MRI techniques.


Merlot Syrah Magnetic resonance imaging (MRI) Grafted vine classification Internal connection 

Einsatz der Magnetresonanztomographie (MRI) zur Ermittlung der Verwachsungsraten der Veredlungspartner und ihre Ergebnisse als Kennwerte für Anbaueigenschaften von veredelten Weinreben am Beispiel der Sorten ‘Syrah‘ und ‘Merlot‘


Merlot Syrah Magnetresonanztomographie (MRI) Klassifizierung veredelter Weinreben Verwachsung 



This study was financed by Namik Kemal University Scientific Research Project Coordination Unit (NKUBAP) project grant number NKUBAP.00.24.YL.13.07. Ayse Guldal Ozdemir thank for her MSc. thesis.

Conflict of interest

İ. Korkutal, E. Bahar, and A.G. Ozdemir declare that they have no competing interests.


  1. Anonymous (1983) Asma Fidanı Standardı. TS3981/Nisan 1983. TSE, Necatibey Cad. 112. Bakanlıklar, AnkaraGoogle Scholar
  2. Anonymous (2005) Proposal for Implementation of the Grafted Grapevine Standards Schedule 1. NZW 06–101 20 October 2005Google Scholar
  3. Bahar E (1996) Hidroponik yöntemlerle aşılı köklü asma fidanı üretimi (Doktora Tezi, Trakya Üniversitesi, Fen Bilimleri Enstitüsü, Tekirdağ)Google Scholar
  4. Bahar E, Korkutal İ, Kök D (2008) Hidroponik kültür ve fidanlık koşullarında yetiştirilen aşılı asma fidanlarının karbonhidrat ve azot içerikleri ile bağdaki tutma performansları üzerine araştırmalar. Akdeniz Üniv Ziraat Fak Dergisi 21(1):15–26Google Scholar
  5. Bahar E, Korkutal I, Carbonneau A, Akcay G (2010) Using magnetic resonance ımaging technique (MRI) to investigate graft connection and its relation to reddening discoloration in grape leaves. J Food Agric Environ 8(3-4):293–297Google Scholar
  6. Blümich B (2000) NMR imaging of materials. Oxford University Press, New YorkGoogle Scholar
  7. Borisjuk L, Rolletschek H, Neuberger T (2012) Surveying the plant’s world by magnetic resonance imaging. Plant J. CrossRefPubMedGoogle Scholar
  8. Brodersen CR, Lee EF, Choat B, Jansen S, Phillips RJ, Shackel KA, McElrone AJ, Matthews MA (2011) Automated analysis of three-dimensional xylem networks using high-resolution computed tomography. N Physiol. CrossRefGoogle Scholar
  9. Callaghan PT (2011) Translational dynamics & magnetic resonance. Principles of pulsed gradient spin echo NMR. Oxford University Press, OxfordCrossRefGoogle Scholar
  10. Çelik H (1978) Asma çeliklerinde bazı teknik ve hormonal uygulamaların kallus oluşumu, aşı tutma ve köklenme oranına etkileri üzerinde araştırmalar (Ankara Üniv. Ziraat Fak. Bahçe Bitk. Bölümü, unpublished PhD thesis, 128s)Google Scholar
  11. Çelik S (2011) Bağcılık (Ampeloloji), Avcı Ofset, Istanbul.Google Scholar
  12. Choat B, Drayton WM, Brodersen C, Matthews MA, Shackel KA, Wada H, Mc Elrone AJ (2010) Measurement of vulnerability to water stress-induced cavitation in grapevine: a comparison of four techniques applied to a longvesseled species. Plant Cell Environ. CrossRefPubMedGoogle Scholar
  13. Dardeniz A, Şahin AO (2005) Aşılı asma fidanı üretiminde farklı çeşit ve anaç kombinasyonlarının vejetatif gelişme ve fidan randımanı üzerine etkileri. Bahce 34(2):1–9Google Scholar
  14. Dean RJ, Stait-Gardner T, Clarke SJ, Rogiers SY, Bobek G, Price WS (2014) Use of diffusion magnetic resonance imaging to correlate the developmental changes in grape berry tissue structure with water diffusion patterns. Plant Methods. CrossRefPubMedPubMedCentralGoogle Scholar
  15. Del Solar CE, Irrazaval PM, Soza JAP, Depallens DL, Esquivel JM (2002) Magnetic resonance (scanner-MRI) in cv. Thompson (V. vinifera L.) seedless as possible technique to evaluate post-harvest condition. Cienc Arte Tecnol 9(2):29–64Google Scholar
  16. De Schepper V, Van Dusschoten D, Copini P, Jahnke S, Steppe K (2012) MRI links stem water content to stem diameter variations in transpiring trees. J Exp Bot. CrossRefPubMedGoogle Scholar
  17. Faget M, Nagel KA, Walter A, Herrera JM, Jahnke S, Schurr U, Temperton VM (2013) Root-root interactions: extending our perspective to be more inclusive of the range of theories in ecology and agriculture using in-vivo analyses. Ann Bot. CrossRefPubMedPubMedCentralGoogle Scholar
  18. Faust M, Wang PC, Maas J (1997) The use of magnetic resonance imaging in plant science. Hortic Rev (Am Soc Hortic Sci). CrossRefGoogle Scholar
  19. Garner RJ (1988) The grafters handbook. Cassell, London, p 320Google Scholar
  20. Gruwel MLH, Latta P, Sboto-Frankenstein U, Gervai P (2013) Visualization of water transport pathways in plants using diffusion tensor imaging. Prog Electromagn Res C. CrossRefGoogle Scholar
  21. Hills B (1998) Magnetic resonance imaging in food science. John Wiley & Sons, New York, p 352. ISBN 978-0471170877Google Scholar
  22. Hochberg U, Albuquerque C, Rachmilevitch S, Cochard H, David-Schwartz R, Brodersen CR, McElrone A, Windt CW (2016) Grapevine petioles are more sensitive to drought induced embolism than stems: evidence from in vivo MRI and microcomputed tomography observations of hydraulic vulnerability segmentation. Plant Cell Environ. CrossRefPubMedGoogle Scholar
  23. Holbrook NM, Ahrens ET, Burns MJ, Zwieniecki MA (2001) In vivo observation of cavitation and embolism repair using magnetic resonance imaging. Plant Physiol. CrossRefPubMedPubMedCentralGoogle Scholar
  24. Homan NM, Windt CW, Vergeldt FJ, Gerkema E, Van As H (2007) 0.7 and 3 T MRI and sap flow in intact trees: xylem and phloem in action. Appl Magn Reson. CrossRefGoogle Scholar
  25. Köckenberger W, Pope JM, Xia Y, Jeffrey KR, Komor E, Callaghan PT (1997) A non-invasive measurement of phloem and xylem water flow in castor bean seedlings by nuclear magnetic resonance microimaging. Planta. CrossRefGoogle Scholar
  26. Köckenberger W, Panfilis CD, Santoro D, Dahiya P, Rawsthorne S (2004) High resolution NMR microscopy of plants and fungi. J Microsc. CrossRefPubMedGoogle Scholar
  27. Koizumi M, Shigehiro N, Nobuaki I, Tomoyuki H, Hiromi K (2008) A dedicated MRI for food science and agriculture. Food Sci Technol Res. CrossRefGoogle Scholar
  28. Kok D (2011) Involvement of peroxidase activity in various sensitivity to gamma irradiation in scions of Cabernet Sauvignon and Merlot cvs (Vitis vinifera L.). J Food Agric Environ 9(2):392–396Google Scholar
  29. Koptyug IV (2007) The frontiers of non medical MRI. Appl Magn Reson. CrossRefGoogle Scholar
  30. Kuchenbrod E, Kahler E, Thürmer F, Deichmann R, Zimmermann U, Haase A (1998) Functional magnetic resonance imaging in intact plants—quantitative observation of flow in plant vessels. Magn Reson Imaging. CrossRefPubMedGoogle Scholar
  31. Kuroda K, Kanbara Y, Inoue T, Ogawa A (2006) Magnetic resonance micro-imaging of xylem sap distribution and necrotic lessions in tree stems. IAWA J 27(1):3–17CrossRefGoogle Scholar
  32. Leszczynski R, Byczkowski B, Jurga S, Korszun S (2000) NMR microimaging studies of the union between stock and scion. Appl Magn Reson. CrossRefGoogle Scholar
  33. May P (1994) Using grapevine rootstocks: the Australian perspective. Winetitles, Cowandilla, p 62Google Scholar
  34. McCain DC, Markley JL (1992) A nuclear magnetic resonance imaging technique designed for studies of water in plant leaves. J Struct Biol. CrossRefPubMedGoogle Scholar
  35. McCarthy M (1994) Magnetic resonance imaging in foods. Springer, Dordrecht CrossRefGoogle Scholar
  36. Milien M, Cookson SJ, Sarrazin A, Verdeil JL (2012) Visualization of the 3D structure of the graft union of grapevine using X‑ray tomography. Sci Hortic. CrossRefGoogle Scholar
  37. Minorsky PV (2007) On the inside. Plant Physiol. CrossRefPubMedCentralGoogle Scholar
  38. Narasimhan PT, Jacobs RE (2005) Microscopy in magnetic resonance imaging. In: Annual reports on NMR spectroscopy CrossRefGoogle Scholar
  39. OIV (2009) OIV descriptor list for grape varieties and Vitis species, 2nd edn., p 178Google Scholar
  40. Özkan R (2005) Bilgisayarlı Tomografinin Temel Prensipleri. 23NJKL4NJ4H 3BG3JH/mse-ppt-pdf/ragip_ozkan.pdf. Accessed 23 Oct 2012Google Scholar
  41. Pérez-Donoso AG, Greve LC, Walton JH, Shackel KA, Labavitch JM (2007) Xylella fastidiosa infection and ethylene exposure result in xylem and water movement disruption in grapevine shoots. Plant Physiol. 143:1024–1036. CrossRefPubMedPubMedCentralGoogle Scholar
  42. Ramanathan KV (2008) Looking into living things. Through MRI. Curr Sci 94(2):272–272. CrossRefGoogle Scholar
  43. Rascher U, Blossfeld S, Fiorani F, Jahnke S, Jansen M, Kuhn AJ, Matsubara S, Martin LLA, Merchant A, Metzner R, Mller-Linow M, Nagel KA, Pieruschka R, Pinto F, Schreiber CM, Temperton VM, Thorpe MR, Van Dusschoten D, Van Volkenburgh E, Windt CW, Schurr U (2011) Non-invasive approaches for phenotyping of enhanced performance traits in bean. Funct Plant Biol. CrossRefGoogle Scholar
  44. Schakel K, Labavitch J, Matthews M, Greve LC, Walton J, Perez A (2007) Magnetic resonance imaging: a non-destructive approach for detection of xylem blockages in Xylella fastidiosa infected grapevines. PD GWSS Board Bull Res Front Page 3:66–70Google Scholar
  45. Scheenen TWJ, Van Dusschoten D, De Jager PA, Van As H (2000) Quantification of water transport in plants with NMR imaging. J Exp Bot 51(351):1751–1759CrossRefGoogle Scholar
  46. Scheenen TWJ, Heemskerk A, Jager A, Vergeldt F, Van As H (2002) Functional imaging of plants. A nuclear magnetic resonance study of a cucumber plant. Biophys J. CrossRefPubMedPubMedCentralGoogle Scholar
  47. Scheenen TWJ, Vergeldt FJ, Heemskerk AM, Van As H (2007) Intact plant magnetic resonance imaging to study dynamics in long-distance sap flow and flow-conducting surface area. Plant Physiol. CrossRefPubMedPubMedCentralGoogle Scholar
  48. Sivritepe N, Türkben C (2001) Müşküle üzüm çeşidinde farklı anaçların aşıda başarı ve fidan randımanı üzerine etkileri. Uludag Univ Ziraat Fak Dergisi 15:47–58Google Scholar
  49. Telkki VV (2012) Wood characterization by NMR and MRI of fluids. In: Harris RK, Wasylishen RL (Eds) Encyclopedia of magnetic resonance CrossRefGoogle Scholar
  50. Tuncel E (2004) Radyolojiye Giriş ve Temel Kavramlar. Uludağ Üniversitesi Basımevi, Tıp Fak. Radyoloji ABD, BursaGoogle Scholar
  51. Tunçel R, Dardeniz A (2013) Aşılı asma çeliklerinin fidanlıktaki vejetatif gelişimi ve randımanları üzerine katlamanın etkileri. Tarım Bilimleri Arastırma Dergisi 6(1):118–122Google Scholar
  52. Van As H (2007) Intact plant MRI for the study of cell water relations, membrane permeability, cell-to-cell and long distance water transport. J Exp Bot. CrossRefPubMedGoogle Scholar
  53. Van As H, Scheenen T, Vergeldt FJ (2009) MRI of intact plants. Photosyn Res. CrossRefPubMedPubMedCentralGoogle Scholar
  54. Van As H, Van Duynhoven J (2013) MRI of plants and foods. J Magn Reson. CrossRefPubMedGoogle Scholar
  55. Wang M, Tyree MT, Wasylishen RE (2013) Magnetic resonance imaging of water ascent in embolized xylem vessels of grapevine stem segments. Can J Plant Sci. CrossRefGoogle Scholar
  56. Windt CW, Vergeldt FJ, de Jager PA, Van As H (2006) MRI of long distance water transport: a comparison of the phloem and xylem flow characteristics and dynamics in poplar, castor bean, tomato and tobacco. Plant Cell Environ. CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2018

Authors and Affiliations

  1. 1.Agricultural Faculty, Department of HorticultureNamik Kemal UniversityTekirdagTurkey
  2. 2.Kandira Ilce MudurluguGida, Tarim ve Hayvancilik BakanligiKocaeliTurkey

Personalised recommendations