Advertisement

Erwerbs-Obstbau

, Volume 60, Issue 2, pp 127–136 | Cite as

Changes in Morphological, Physiological Traits and Enzyme Activity of Grafted and Ungrafted Grapevine Rootstocks Under Drought Stress

  • Seda SucuEmail author
  • Adem Yağcı
  • Kubilay Yıldırım
Original Article

Abstract

American grapevine rootstocks are used as the most efficient control method for phylloxera disease. Vitis vinifera species are grown over these rootstocks. The rootstocks may have different drought tolerances. In present study, morphological and physiological responds and enzyme activities of grafted and ungrafted grapevines were investigated under drought stress. The rootstocks Rupestris du Lot, 420A, 5BB, SO4, 8B, 110R, 1103P, 140Ruggeri and Ramsey and K‑7 clone of Sultani Seedless grape cultivar were used as the plant material of this study. Drought stress was exerted as water deficits and stress treatments were terminated when the available moisture level dropped to 5%. Current findings revealed that grafted plants were less influenced morphologically from the droughts than the ungrafted ones. In control group, average leaf water potential was measured as −0.51 MPa for ungrafted plants and −0.46 MPa for grafted plants. In stress group, leaf water potential was measured as −2.03 MPa for ungrafted plants and as −1.69 MPa for grafted ones. Superoxide dismutase (SOD) and ascorbate peroxidase (APX) enzyme activities of both grafted and ungrafted plants increased with drought stress. Considering the enzyme activities of ungrafted plants in control and stress groups, it was observed that SOD activity increased from 508 (unit/mg protein) to 852 (unit/mg protein); APX activity increased from 153 (micromole/mg protein/min) to 584 (micromole/mg protein/min). In grafted plants, SOD activity increased from 639 (unit/mg protein) to 796 (unit/mg protein); APX activity increased from 414 (micromole/mg protein/min) to 1002 (micromole/mg protein/min). The drought resistant rootstocks (like 140Ru, 110R) exhibited higher enzyme activity in both control and stress groups than drought sensitive rootstocks (like 5BB, SO4).

Keywords

American grapevine rootstock Sapling Leaf water potential SOD APX 

Veränderungen bei morphologischen und physiologischen Eigenschaften sowie in der Enzym-Aktivität von veredelten und nicht veredelten Weinreben-Unterlagen unter Trockenstress

Schlüsselwörter

Amerikanische Weinreben-Unterlage Jungpflanze Blattwasserpotential Superoxid-Dismutase (SOD) Ascorbatperoxidase (APX) 

Notes

Conflict of interest

K. Yıldırım conceived and designed all the drought treatment. S. Sucu and A. Yağcı grown the plants, applied the drought treatment and collected the data and plant materials. K. Yıldırım and S. Sucu conducted the protein isolation and carried out the enzyme activity experiments. S. Sucu analyzed data and wrote the whole manuscript. All authors read and approved that there are no conflict of interest.

References

  1. Alonso R, Berli FJ, Piccoli P, Bottini R (2016) Ultraviolet-B radiation, water deficit and abscisic acid: A review of independent and interactive effects on grapevines. Theor Exp Plant Physiol Doi. doi: 10.1007/s40626-016-0053-y CrossRefGoogle Scholar
  2. Asada K (1999) The water-water cycle in Chloroplasts scavenging of active oxygens and dissipation of excess photons. Annu Rev Plant Physiol Plant Mol Biol 50:601–639CrossRefPubMedGoogle Scholar
  3. Bahar E, Korkutal I, Kurt C (2011) Water deficit effect on different phenologic growth stages in grape berry growing, development and quality. Trakya Univ J Sci 12(1):23–34Google Scholar
  4. Bakır M (2012) Microarray analysis of grapevine cultivars and rootstocks intended for water deficiency and salt stress tolerances and determination of stress related transcriptomes. (Unpublished Doctoral thesis). Ankara University, Institute of Biotechnology, Ankara/TurkeyGoogle Scholar
  5. Bavaresco L, Lovisolo C (2000) Effect of grafting on grapevine chlorosis and hydraulic conductivity. Vitis 39:89–92Google Scholar
  6. Bloom AJ, Chapin FS (1985) Resource limitation in plants: An economic analogy. Annu Rev Ecol Syst 16:363–392CrossRefGoogle Scholar
  7. Çelik H (1996) Bağcılıkta anaç kullanımı ve yetiştiricilikteki önemi (Rootstocks used in viticulture and their importance for grape growing – a review). Anadolu J Aarı 6(2):127–148Google Scholar
  8. Çelik H (2012) Türkiye Bağcılığı ve Asma Fidanı Üretimi Dış Ticaret ile İlgili Stratejik Bir Değerlendirme. Türkiye Tohumcular Birliği Dergisi 1(4):10–16. (in Turkish)Google Scholar
  9. Çelik H, Ağaoğlu YS, Fidan Y, Marasalı B, Söylemezoğlu G (1998) Genel Bağcılık. In: Sunfidan AŞ (ed) Mesleki Kitaplar Serisi. 1. Fersa Matbaacılık, Kızılay-Ankara (in Turkish)Google Scholar
  10. Çelik S (2011) BağcılıkKitabı.Cilt:1. Namık Kemal Üniversitesi Ziraat Fakültesi Bahçe Bitkileri Bölümü Tekirdağ (in Turkish)Google Scholar
  11. Çolak Y, Yazar A (2012) Akdeniz Bölgesinde Flame Seedless Ve Italıa Sofralık Üzüm Çeşitlerinde Yaprak Su Potansiyeline Göre Sulama Programlarının Geliştirilmesi. Ç.Ü Fen Ve Mühendislik Bilimleri Dergisi Yıl:2012 Cilt:28–4Google Scholar
  12. Comas LH, Bauerle TL, Eissenstat DM (2010) Biological and environmental factors controlling root dynamics and function: Effects of root ageing and soil moisture. Grape Wine Res 16:131–137CrossRefGoogle Scholar
  13. Düring H (1994) Photosynthesis of ungrafted and grafted grapevines: Effects of rootstock genotype and plant age. Am J Enol Vitic 45(3):297–299Google Scholar
  14. Epstein E (2004) Plant biologists need to get back to their roots. Nature 430:829–829CrossRefPubMedGoogle Scholar
  15. Fanizza G, Ricciardi L (1990) Influence of drought stress on shoot, leaf growth, leaf water potential Stomatal resistance in wine grape genotypes. 5th. Inter Symp. Grape Breeding, St. Martin-Pfalz, pp 371–381 (Proc)Google Scholar
  16. Fardossi A, Hepp E, Mayer C, Kalchgruber R (1992) The influence of different rootstock cultivars on growth, yield, of the scion cultivar Neuburger (Vitis vinifera L. ssp.) in the third year. Mitteilungen Klosterneuburg, Rebe und Wein, Obstbau und Früchteverwertung 42:47–57Google Scholar
  17. Girona J, Mata M, Del Campo J, Arbonés A, Bartra E, Marsal J (2005) The use of midday leaf water potential for scheduling deficit irrigation in vineyards. Irrigation Sci 24(2):115–127CrossRefGoogle Scholar
  18. Hannah L, Roehrdanz P, Ikegami M, Shepard A, Shaw M, Tabo G, Zhi L, Marquet P, Hijmans R (2013) Climate change wine and conservation. Proc Natl Acad Sci 110(17):6907–6912CrossRefPubMedPubMedCentralGoogle Scholar
  19. İlter E (1982) Bazı Amerika Asma Anaçlarının Yuvarlak Çekirdeksiz Çeşidinde Üzüm VeÇubuk Verimine Etkisi Üzerinde Araştırmalar Ege Ü.Z.F. Yayınları No. 416. Bornova-İzmirGoogle Scholar
  20. Jung S (2004) Variation in antioxidant metabolism of young and mature leaves of Arbidopsis Thaliana subjected to drought. Plant Sci 166:459–466CrossRefGoogle Scholar
  21. Karahan G, Erşahin S, Öztürk HS (2014) Toprak Koşullarına Bağlı Olarak Tarla Kapasitesi Dinamiği. Gaziosmanpaşa Üniversitesi Ziraat Fakültesi Dergisi 30(1):1–11 (in Turkish)Google Scholar
  22. Köse B, Ateş S (2016) Seasonal changes of shoot carbohydrates and growth characteristics of ‘Trakya İlkeren’ grape variety (Vitis vinifera L.). Erwerbs-Obstbau 2016(10). doi: 10.1007/s10341-016-0298-2 CrossRefGoogle Scholar
  23. Kısmalı İ (1984) Yuvarlak Çekirdeksiz Üzüm Çeşidi Ve Farklı Amerikan Asma Anaçları İle Yapılan Aşılı Köklü Asma Fidanı Üretimi Üzerine Araştırmalar. Ege Ü. Z. F. Doçentlik Tezi İzmir (in Turkish)Google Scholar
  24. Lacono F, Buccella A, Peterlunger E (1998) Water stress and rootstock influence on leaf gas exchange of grafted and ungrafted grapevines. Sci Hortic 75:27–39CrossRefGoogle Scholar
  25. Lopez F, Van Uyt G, Casse Delbart F, Fourcroy P (1996) Ascorbate Peroxidase activity not the Mrna level, is enhanced in salt stressed Raphanus Sativus. Plantsphysiologia Plantarum 97:13–20CrossRefGoogle Scholar
  26. Loue A (1990) Le diagnostic foliatre dans les enguetes de nutrition minerale des vignes. Le Progress Agricole 20:439–453Google Scholar
  27. McCarthy MG (1993) The effect of transient water deficit on Berry development of Cv. Syra (Vitis vinifera L). J Grape Wine Res 3:102–108Google Scholar
  28. McCully ME (1999) Roots in soil: unearthing the complexities of roots and their rhizospheres. Annu Rev Plant Physiol 50:695–718CrossRefGoogle Scholar
  29. Murshed R, Lopez-Lauri F, Sallanon H (2008) Microplate Quantification of enzymes of the plant ascorbate–Glutathione cycle. Anal Biochem 383:320–322CrossRefPubMedGoogle Scholar
  30. Pavlousek P (2011) Evaluation of drought tolerance of new grapevine Rootstockhybrids. J Environ Biol 32:543–549PubMedGoogle Scholar
  31. Pereira GE, Gaudillere JP, Pieri P, Hilbert G, Maucourt M, Deborde C, Rolin M (2006) Microclimate influence on mineral and metabolic profiles of grape berries. J Agric Food Chem 54(18):6765–6775CrossRefPubMedGoogle Scholar
  32. Rahnama H, Ebrahimzadeh H (2005) The effect of NaCl on antioxidant enzyme activities in potato seedlings. Biol Plant 49:93–97CrossRefGoogle Scholar
  33. Renard M, Guerrier G (1997) Is Proline A compatible solute in Cali from NaCl – sensitive Lycopersicon Esculentum and nacl – tolerant L. Pennellü. Plant Physiol 150:331–337CrossRefGoogle Scholar
  34. Şahin Ö (2009) Farklı Asma Anaçlari Üzerine Aşili Sultani Çekirdeksiz (Vitis Vinifera L.)Üzüm Çeşidinin Bor Ve Tuz Stresine Tolerans Mekanizmalarinin Stresle İlgili Fizyolojik Parametreler Ve Antioksidan Enzimlerle Belirlenmesi Ankara Üniversitesi Fen Bilimleri Enstitüsü Toprak Anabilim Dalı.Yüksek Lisans Tezi (in Turkish)Google Scholar
  35. Scholander PF, Hammel HT, Bradstreet ED, Hemmingsen EA (1965) Sap pressure in vascular plants. Science 148:339–346CrossRefPubMedGoogle Scholar
  36. Serra I, Strever A, Myburgh PA, Deloire A (2014) Review: the interaction between rootstocks and cultivars (Vitis vinifera L.) to enhance drought tolerance in grapevine. Aust J Grapewine Res 20(1):1–14CrossRefGoogle Scholar
  37. Sezen M (2012) Genel Sulama Ders Notları. Bahçe Kültürleri Arastırma İstasyonu Tarsus Toprak ve Su Kaynakları Lokasyonu, Su Yönetimi Bölümü, Tarsus-MERSİNGoogle Scholar
  38. Sharma J, Upadhyay AK (2004) Effect Of Moisture Stress On Performance Of Own Rooted and Grafted Vınes Of Tas-A-Ganesh (Vıtıs Vınıfera L.). Actahortic 2004(662):36Google Scholar
  39. Shigeoka S, Ishikawa T, Tamoi M, Miyagawa Y, Takeda T, Yabuta Y, Yoshimura K (2002) Regulation and function of ascorbate Peroxidase Isoenzymes. Exp Bot 53:1305–1319CrossRefGoogle Scholar
  40. de Souza CR, Maroco JP, dos Santos TP, Rodrigues ML, Lopes C, Pereira JS, Chaves MM (2005) Control of stomatal aperture and carbon uptake by deficit irrigation in two grapevine cultivars. Agric Ecosyst Environ 106:261–274CrossRefGoogle Scholar
  41. Spıegel-Roy I, Kochba J, Lavee S (1971) Performance of table grape cultivars on different rootstocks in an arid climate. Vitis 10:191–200Google Scholar
  42. Srivalli B, Sharma G, Khanna-Chopra R (2003) Antioxidative defence system in upland rice cultivar subjected to increasing intensity of water stress followed by recovery. Physiol Plant 119:503–512CrossRefGoogle Scholar
  43. Tandonnet J‑P, Cookson SJ, Vivin P, Ollat N (2010) Scion genotype controls biomass allocation and root development in grafted grapevine. Aust J Grape Wine Res 16:230–300Google Scholar
  44. Tramontini S, Vitali M, Centioni L, Schubert A, Lovisolo C (2013) Rootstock control of scion response to water stress in grapevine. Environ Exp Bot 93:20–26CrossRefGoogle Scholar
  45. Tsegay D, Amsalem D, Almeida M, ve Crandles M (2015) Responses of grapevine rootstocks to drought stress. Int J Plant Physiol Biochem 6(1):1–6Google Scholar
  46. Türkan I, Bor M, Özdemir F, ve Koca H (2005) Differential responses of lipid Peroxidation and antioxidants in the leaves of drought-tolerant P. acutifolius Gray and drought-sensitive P. vulgaris L. subjected topolyethylene glycol mediated water stress. Plant Sci 168:223–231CrossRefGoogle Scholar
  47. Van Zyl JL (1984) Response of grapevine roots to soil water regimes and irrigation systems. in the grapevine root and its environment. Department of Agriculture and Water Supply, No. 215, Pretoria, South Africa, pp 30–43Google Scholar
  48. Vincent D, Ergül A, Bohlman MC, Tattersall EAR, Tillett RL, Wheatley MD, Woolsey R, Quilici DR, Joets J, Schlauch K, Schooley DA, Cushman JC, Cramer GR (2007) Proteomic analysis reveals differences between Vitis Vinifera L. Cv.Chardonnay and Cv. Cabernet Sauvignon and their responses to water deficit and salinity. J Exp Bot 58(7):1873–1892CrossRefPubMedGoogle Scholar
  49. Williams LE, Retzlaff WA, Yang W, Biscay PJ, Ebisuda N (1994) The effect of girdling on leaf net CO2 assimilation, water potential, and non-structural carbohydrates of Thompson Seedless. In: Rantz JM (ed) Proceedings International Symposium on Table Grape Production, Anaheim, CA, USA, 199428.29.1994, pp 142–146Google Scholar
  50. Yang Y, Yan CQ, Cao BH, Xu HX, Chen JP, ve Jiang DA (2006) Somephotosynthetic responses to salinity Resistanceare transferred into the somatic Hybriddescendants from the wild Soybeanglycine Cyrtoloba ACC547. PhysiolPlant 129:658–669CrossRefGoogle Scholar
  51. Yıldırım K, Kaya Z (2017) Gene regulation network behind drought escape, avoidance and tolerance strategies in black poplar (Populus nigra L.). Plant Physiol Biochem 115:183–199CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Deutschland 2017

Authors and Affiliations

  1. 1.Agricultural Faculty, Department of HorticultureGaziosmanpaşa UniversityTokatTurkey
  2. 2.Faculty of Engineering and Natural Sciences, Genetic and Bioengineering DepartmentGaziosmanpaşa UniversityTokatTurkey

Personalised recommendations