, Volume 59, Issue 4, pp 291–299 | Cite as

Estimation of the Colour Properties of Apples Varieties Using Neural Network

  • Zeynel Abidin Kus
  • Bunyamin DemirEmail author
  • Ikbal Eski
  • Feyza Gurbuz
  • Sezai Ercisli
Original Article


The consumer acceptance and the quality standard of agricultural products such as apple are determined mostly by their colour. Colour is measured with a colorimeter and quantified using the C.I.E. L*, a*, b* colour space system. It is used commonly by researchers for the classification and identification of apple fruit. To the best of our knowledge, the present study is the first study investigating the prediction of some colour properties of six apple varieties through artificial neural networks (ANN). The apple varieties are ‘Amasya’, ‘Starking’, ‘Granny Smith’, ‘Pink Lady’, ‘Golden Delicious’, ‘Arapkızı’ and the colour properties are L* (lightness), a* (redness), b* (yellowness), C* (chroma), h* (hue angle), CI (chroma index). General Regression Neural Networks (GRNN) and Adaptive Neuro Fuzzy Interface System (ANFIS) structures were employed to predict the colour properties. According to the experimental and simulation results, the proposed ANFIS predictor had a superior performance in prediction of these colour parameters.


Neural Network Estimation Apple Varieties Colour Index Chroma Hue Angle 

Bewertung der Farbmerkmale bei Apfelsorten unter Verwendung eines neuronalen Netzwerkes


Neuronales Netzwerk Bewertung Apfelsorten Farbindex Hue Angle Farbsättigung 


  1. Aras I (2015) Elma Sektoru Raporu. Mevlana Kalkinma Ajansı, Karaman, p 40Google Scholar
  2. Arslan S, Vursavus KK (2008) Physico-mechanical properties of almond nut and its kernel as a function of variety and moisture content. Philipp Agric Sci 91:171–179Google Scholar
  3. Batu A (2004) Determination of acceptable firmness and colour values of tomatoes. J Food Eng 61:471–475CrossRefGoogle Scholar
  4. Bernalte MJ, Sabio E, Hernandez MT, Gervasini C (2003) Influence of storage delay on quality of ‘Van’sweet cherry. Postharvest Biol Technol 28:303–312CrossRefGoogle Scholar
  5. Brown AG (1975) Apples. In: Janick J, Moore JN (eds) Advances in fruit breeding. Purdue University Press, West Lafayette IN, pp 3–37Google Scholar
  6. Campbell BL, Nelson RG, Ebel CE, Dozier WA, Adrian JL, Hockema BR (2004) Fruit quality characteristics that affect consumer preferences for satsuma mandarins. HortScience 39:1664–1666Google Scholar
  7. Ercisli S, Boydas MG, Kalkan F, Ozturk I, Kara M (2015) Dimensional, frictional, and color properties of four quince cultivars (Cydonia oblonga Miller). Erwerbs Obstbau 57:113–118CrossRefGoogle Scholar
  8. Ernesto THM, Velázquez DM, Contreras AJO, Meza AO (2013) Prediction of days after anthesis of developing tomato (Solanum lycopersıcum) fruit from blossom-end changes in color. Am J Agric Biol Sci 8:191–198CrossRefGoogle Scholar
  9. Fairchild MD (2005) Color and image appearance models, 2nd Ed., Wiley-IS&T, Chichester, UK.Google Scholar
  10. FAO (2012) FAO Web Page. Accessed 20 July 2016Google Scholar
  11. Iglesias I, Alegre S (2006) The effect of anti-hail nets on fruit protection, radiation, temperature, quality and profitability of ‘Mondial Gala’ apples. J Appl Hortic 8:91–100Google Scholar
  12. Iglesias I, Echeverria G, Soria Y (2008) Differences in fruit colour development, anthocyanin content, fruit quality and consumer acceptability of eight ‘Gala’ apple strains. Sci Hortic 119:32–40CrossRefGoogle Scholar
  13. Kalkisim O, Ozdes D, Okcu Z, Karabulut B, Senturk HB (2016) Determination of pomological and morphological characteristics and chemical compositions of local apple varieties grown in Gumushane, Turkey. Erwerbs Obstbau 58:41–48CrossRefGoogle Scholar
  14. Kang SP, East AR, Trujillo FJ (2008) Colour vision system evaluation of bicolour fruit: A case study with ‘B74’ mango. Postharvest Biol Technol 49:77–85CrossRefGoogle Scholar
  15. Liu X, Zhao D, Jia W, Ruan C, Tang S, Shen T (2016) A method of segmenting apples at night based on color and position information. Comput Electron Agric 122:118–123CrossRefGoogle Scholar
  16. Miller S, Hampson C, McNew R, Berkett L, Brown S, Clements J, Greene G (2005) Performance of apple cultivars in the 1995 NE-183 regional project planting: III. Fruit sensory characteristics. J Am Pomol Soc 59:28–43Google Scholar
  17. Ozcagiran R, Unal A, Ozeker E, Isfendiyaroglu M (2005) Ilıman İklim Meyve Türleri. Yumuşak Çekirdekli Meyveler vol. II. Ege Üniversitesi Ziraat Fakültesi Yayınları, İzmirGoogle Scholar
  18. Ozturk I, Ercisli S, Kara M (2009) Chosen physical properties of olive cultivars (Olea europaea L.). Int Agrophys 23:309–312Google Scholar
  19. Rabinovich AT (2009) Studies on apple peel color regulation. Dissertation. University of Minnesota, MinnesotaGoogle Scholar
  20. Rossel RV, Minasny B, Roudier P, McBratney AB (2006) Colour space models for soil science. Geoderma 133:320–337CrossRefGoogle Scholar
  21. Rutkowski KP, Michalczuk B, Konopacki P (2008) Nondestructive determination of ‘Golden Delicious’ apple quality and harvest maturity. J Fruit Ornam Plant Res 16:39–52Google Scholar
  22. Sahin S, Sumnu SG (2006) Physical properties of foods. Springer Science+Bussiness Media, New York, p 257Google Scholar
  23. Singh KK, Reddy BS (2006) Post-harvest physico-mechanical properties of orange peel and fruit. J Food Eng 73:112–120CrossRefGoogle Scholar
  24. Soylak M, Oktay T, Turkmen I (2015) A simulation-based method using artificial neural networks for solving the inverse kinematic problem of articulated robots. Proc Inst Mech Eng E J Process Mech Eng. doi: 10.1177/0954408915608755 Google Scholar
  25. Viscarra Rossel RA, Minasny B, Roudier P, Mc Bratney AB (2006) Color space models for soil science. Geoderma 133:320–337CrossRefGoogle Scholar
  26. White AG, Johnstone A (1991) Measurement of fruit surface colour in ‘Gala’ apple (Malus pumila Mill.) and twenty of its sports by image analysis. N Z J Crop Hortic Sci 19:221–223CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Zeynel Abidin Kus
    • 1
  • Bunyamin Demir
    • 1
    Email author
  • Ikbal Eski
    • 2
  • Feyza Gurbuz
    • 3
  • Sezai Ercisli
    • 4
  1. 1.Department of Biosystems Engineering, Faculty of AgricultureErciyes UniversityKayseriTurkey
  2. 2.Department of Mechatronics Engineering, Faculty of EngineeringErciyes UniversityKayseriTurkey
  3. 3.Department of Industrial Engineering, Faculty of EngineeringErciyes UniversityKayseriTurkey
  4. 4.Department of Horticulture, Faculty of AgricultureAtaturk UniversityErzurumTurkey

Personalised recommendations