Advertisement

Erwerbs-Obstbau

, Volume 55, Issue 2, pp 51–62 | Cite as

Multi Criteria Assessment of Zero Residue Apple Production

  • Črtomir RozmanEmail author
  • Tatjana Unuk
  • Karmen Pažek
  • Mario Lešnik
  • Jernej Prišenk
  • Andrej Vogrin
  • Stanislav Tojnko
Original Article

Abstract

During the 2008–2010 growing seasons, an alternative ‘zero residue apple production system’ was compared with integrated apple production with cvs ‘Idared’, ‘Golden Delicious’, ‘Jonagold’ and ‘Gala’ in commercial orchards at several locations throughout Slovenia, using data envelopment analysis (DEA), and multi criteria assessment by an analytical hierarchical process (AHP). The principle of the ‘zero residue apple production’ is a combination of integrated (IP) and organic apple production. During the first 3 months of the growing season (1 April–30 June), pesticides used in IP with rapid degradation (8–10 applications) were used to control pests and diseases. During the second part of the season from 1 July to harvest, organic products (6–12 applications) were employed compared with 19–25 applications overall in IP. The goal of the alternative system was to reduce the amount of applied conventional pesticides by 40 % and to minimize pesticide residues in fruits to below the limit of 0.5 % of the legal maximum residue level (MRL) or below the residue concentrations of 0.005–0.01 mg/kg and to retain the high long-term level of yield, fruit quality, and net income per hectare. The number of pesticide residues was reduced from 4.2–5.5 in IP to 1.8–3.4 in zero residue cultivation, while 3 year average yields (class 1 fruit) were 4–9 % lower than in IP. The break even prices ranged from € 0.31 for Idared in IP, € 0.34 for ‘Elstar’ of both production systems to € 0.35/kg for zero residue cultivated ‘Golden Delicious’. Overall, a price increase of just € 0.02/kg for residue free apples would make this new ‘zero residue apple production’ profitable then representing a realistic alternative to the standard integrated apple production system.

Keywords

Apple Production system Integrated production Zero residue Economics DEA analysis AHP assessment Sustainability 

Bewertungskriterien für einen rückstandsfreien Apfelanbau

Zusammenfassung

Über 3 Jahre (2008–2010) wurde der rückstandsfreie Apfelanbau bei den Sorten ‘Idared’, ‘Golden Delicious’, ‘Jonagold’, ‘Gala’ mit dem IP- Anbau auf Obstbaubetrieben in Slovenien mit Hilfe von statistischer und DEA-Analyse (data envelopment analysis) und multikriteriellen analytischen Hierarchieprozessen(AHP) untersucht. Das Prinzip des rückstandsfreien Apfelanbaus ist die Kombination des Intergrierten und ökologischen Anbaus. In den ersten 3 Monaten der Vegetationsperiode (1. April–30. Juni) wurden Pflanzenschutzmittel mit schneller Abbaurate aus Intergriertem Anbau mit 8–10 Maßnahmen und in der zweiten Vegetationshälfte vom 1. Juli bis zur Ernte Pflanzenschutzmittel (6–12 Maßnahmen) aus dem ökologischen Anbau eingesetzt. Das Ziel des rückstandsfreien Anbausystems ist es, erstens den konventionellen Pflanzenschutzmitteleinsatz unter 40 % zu reduzieren und zweitens die Pflanzenschutzmittelrückstände unter den zulässigen höchsten Rückstandswert (MRL-Maximum Residue Level) von 0,5 % bzw. unter die Rückstandskonzentration von 0,005–0,01 mg/kg zu senken. Die Zahl der Pflanzenschutzrückstände in den Äpfeln sanken von 4,2–5,5 im IP auf 1,8–3,4 im rückstandsfreien Apfelanbau. Die Voraussetzung für die Wirtschaftlichkeit des neuen rückstandsfreien Apfelanbaus ist ein dem IP-Anbau vergleichbarer Ertrag an qualitativ hochwertigen Äpfeln (Fruchtqualität und Netto-Einkommen). Die Kosten deckenden Erzeugerpreise reichten von € 0,31 für ‘Idared’ im IP, über € 0,34 für ‘Elstar’ beider Anbausysteme bis zu € 0,35/kg für rückstandsfreie ‘Golden Delicious’. Die Rentabilität des rückstandsfreien Anbaus war, aufgrund besserer Vermarktunschancen mit weniger Rückständen, trotz 4–9 % geringerer Erträge (HKl 1) als im IP mit dem Integrierten vergleichbar. Sie wäre bereits ab einem um € 0,02/kg höheren Preis für die rückstandsfreie Ware profitabel und könnte dann in Zukunft eine wirtschaftlich realistische Alternative zum Integrierten Anbau werden.

Schlüsselwörter

Apfel AHP-Beurteilung Anbausystem DEA-Analyse Integrierter Anbau Rückstandsfreier Apfelanbau Nachhaltigkeit Wirtschaftlichkeit 

References

  1. Andre FJ (2009) Indirect elicitation of non-linear multi-attribute utility functions. A dual procedure combined with DEA Omega 37:883–895Google Scholar
  2. Anonymus (2012) Erklärung der Institute für angewandte Forschung im Obstbau; Ist die Zukunft des Integrierten Obstanbaues in Mitteleuropa gefährdet? Mitt. OVR 67, 11, 1-2. http://www.esteburg.de/v1/uploads/Service/ErklaerungDerInstitute.pdfGoogle Scholar
  3. Berrie AM, Cross JV (2005) Development of an integrated pest and disease management system for apples to produce fruit free from pesticide residues—aspects of disease control. IOBC/WPRS Bulletin 29(1):129–138Google Scholar
  4. Berrie AM, Cross J (2012) Producing apples free of pesticide residues. IOBC-WPRS Bulletin 84:305–314Google Scholar
  5. Bohanec M, Cortet J, Griffiths B, Žnidaršič M, Debeljak M, Caul S, Thompson J, Krogh PH (2007) A qualitative multi-attribute model for assessing the impact of cropping systems on soil quality. Pedobiologia 51:239–250CrossRefGoogle Scholar
  6. Bohanec M, Messean A, Scatasta S, Angevin F, Griffiths B, Krogh PH, Žnidaršič M, Džeroski S (2008) A qualitative multi-attribute model for economic and ecological assessment of genetically modified crops. Ecol Modelling 215:247–261CrossRefGoogle Scholar
  7. Carpani M, Bergez JM, Monod H (2012) Sensitivity analysis of a hierarchical qualitative model for sustainability assessment of cropping systems. Environ Modelling Software 27–28:15–22CrossRefGoogle Scholar
  8. Charnes A, Cooper WW (1962) Programming with linear fractional functionals. Nav Res Log 9(3–4):181–186Google Scholar
  9. Charnes A, Cooper W, Rhodes E (1978) Measuring the efficiency of decision making units. Eur J Oper Res 2:429–444CrossRefGoogle Scholar
  10. Cross JV, Berrie AM (2001) Integrated pest and disease management in apple production. In: The Best Practice Guide for UK Apple Production, Department for Environment, Food & Rural Affairs (Defra), Horticulture Research International, Farm Advisory Services Team Ltd, ADAS, pp. 21–29Google Scholar
  11. Cross JV, Berrie AM (2008) Eliminating the Occurrence of Reportable Pesticide Residues in Apples. Agricultural Engineering International: the CIGR Ejournal. Manuscript ALNARP 08 004. Vol. XGoogle Scholar
  12. Dantsis T, Douma C, Giourga C, Loumou A, Polychronaki EA (2010) A methodological approach to assess and compare the sustainability level of agricultural plant production systems. Ecol Indic 10:256–263CrossRefGoogle Scholar
  13. Đatkov D, Effenberger M (2010) Data envelopment analysis for assessing the efficiency of biogas plants: Capabilities and limitations. J Process Energy Agric 14(1):49–53Google Scholar
  14. Delate K, McKern A (2008) Organic Apple Systems: constraints and opportunities for producers in local and global markets: introduction to the colloquium. Hortscience 43(1):6–11Google Scholar
  15. Girardin P, Bockstaller C, Werf H (2000) Assessment of potential impacts of agricultural practices on the environment: the AGRO*ECO method. Environ Impact Assess Rev 20:227–239CrossRefGoogle Scholar
  16. Jiang J, Wan N (2009) A model for ecological assessment to pesticide pollution management. Ecol Model 220:1844–1851CrossRefGoogle Scholar
  17. Jones AL, Ehret GR, El-Hadidi MF, Zabik MF, Cash JN, Johnson JW (1993) Potential for zero residue disease-control programs for fresh and processed apples using sulfur, fenarimol, and myclobutanil. Plant Dis 77:1114–1118CrossRefGoogle Scholar
  18. Lilienfeld A, Asmild M (2007) Estimation of excess water use in irrigated agriculture: a data envelopment analysis approach. Agr Water Manage 94:73–82CrossRefGoogle Scholar
  19. Mao W, Koo WW (1997) Productivity growth, technological progress, and efficiency change in Chinese agriculture after rural economic reforms: A DEA approach. China Econ Rev 8:157–174CrossRefGoogle Scholar
  20. Martić MM, Novaković MS, Baggia A (2009) Data envelopment analysis—basic models and their utilization. Organizacija 42:17–26CrossRefGoogle Scholar
  21. Mazzeto F, Bonera R (2003) MEACROS: a tool for multi-criteria evaluation of alternative cropping systems. Eur J Agron(18):379–387
Misra SK, Huang CL, Ott SL (1991) Consumer Willingness to Pay for Pesticide-Free Fresh Produce. Western Journal of Agricultural Economics 16(2):218–227Google Scholar
  22. Montazar A, Behbahani SM (2007) Development of an optimised irrigation system selection model using analytical hierarchy process. Biosyst Eng 98:155–165CrossRefGoogle Scholar
  23. Nassiri SM, Singh S (2009) Study on energy use efficiency for paddy crop using data envelopment analysis (DEA) technique. Appl Energy 86:1320–1325CrossRefGoogle Scholar
  24. Pavlovič M, Cerenak A, Pavlovič V, Rozman Č, Bohanec M (2011) Development of DEX-HOP multi-attribute decision model for preliminary hop hybrids assessment. Computers Electron Agri 75:181–189CrossRefGoogle Scholar
  25. Pelzer E, Fortino G, Bockstaller C, Angevin F, Lamine C, Moonen C, Vasileiadis V, Guerin D, Guichard L, Reau R, Messean A (2012) Assessing innovative cropping systems with DEXiPM, a qualitative multi-criteria assessment tool derived from DEXi. Ecol Indic 18:171–182CrossRefGoogle Scholar
  26. Picazo-Tadeo AJ, Gomez-Limon JA, Reig-Martı́nez E (2011) Assessing farming eco-efficiency: a data envelopment analysis approach. J Environ Manag 92:1154–1164CrossRefGoogle Scholar
  27. Reig-Martı́nez E, Picazo-Tadeo AJ (2004) Analysing farming systems with data envelopment analysis: citrus farming in Spain. Agri Syst 82:17–30CrossRefGoogle Scholar
  28. Roosen J, Fox JA, Hennessy DA, Schreiber A (1998) Consumers’ valuation of insecticide use restrictions: an application to apples. J Agri Res Econ 23(2):367–384Google Scholar
  29. Saaty TL (1980) The analytic hierarchy process. McGraw-Hill, New YorkGoogle Scholar
  30. Saaty TL, Kearns K (1991) Analytical Planning; the Organization of Systems. Pergamon Press, Oxford. Russian edition: Paperback edition. RWS Publications, PittsburghGoogle Scholar
  31. Sueyoshi T (1999) DEA non-parametric ranking test and index measurement: slack-adjusted DEA and an application to Japanese agriculture cooperatives. Omega 27:315–326CrossRefGoogle Scholar
  32. Tiwari DN, Loof R, Paudyal GN (1999) Environmental-economic decision-making in lowland irrigated agriculture using multi-criteria analysis techniques. Agri Syst 60:99–112CrossRefGoogle Scholar
  33. Triantaphyllou E, Mann SH (1994) An evaluation of the AHP and the revised AHP when the eigenvalue method is used under a continuity assumption. Computers Ind Eng 2(1):35–44Google Scholar
  34. Wan N, Jiang J, Ji X, Deng J (2009) Application of analytic hierarchy process-based model of Ratio of Comprehensive Cost to Comprehensive Profit (RCCCP) in pest management. Ecol Econ 68:888–895CrossRefGoogle Scholar
  35. Weibel FP, Tamm L, Wyss E, Daniel C, Häseli A, Suter F (2007) Organic fruit production in Europe: successes in production and marketing in the last decade, perspectives and challenges for the future development. Acta Hortic 737:163–172Google Scholar
  36. Zhang B, Zhang Y, Chen D, White RE, Li Y (2004) A quantitative evaluation system of soil productivity for intensive agriculture in China. Geoderma 123:319–331CrossRefGoogle Scholar
  37. Žnidaršič M, Bohanec M, Zupan B (2008) Modelling impacts of cropping systems: demands and solutions for DEX methodology. Eur J Oper Res 189:594–608CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Črtomir Rozman
    • 1
    Email author
  • Tatjana Unuk
    • 1
  • Karmen Pažek
    • 1
  • Mario Lešnik
    • 1
  • Jernej Prišenk
    • 1
  • Andrej Vogrin
    • 1
  • Stanislav Tojnko
    • 1
  1. 1.Faculty of Agriculture and Life SciencesUniversity of MariborHočeSlovenia

Personalised recommendations