Advertisement

Impact of a shared sugar food source on biological control of Tuta absoluta by the parasitoid Necremnus tutae

  • Mateus Ribeiro de Campos
  • Lucie S. Monticelli
  • Philippe Béarez
  • Edwige Amiens-Desneux
  • Yusha Wang
  • Anne-Violette Lavoir
  • Lucia Zappalà
  • Antonio Biondi
  • Nicolas DesneuxEmail author
Original Paper
  • 79 Downloads

Abstract

Honeydew is a sugar-rich food source produced by sap-feeding insects, notably by major pests such as aphids and whiteflies. It is an important alternative food source for the adult stage of various key natural enemies (e.g., parasitoids), but it may be used also as food by agricultural pests. Necremnus tutae is an idiobiont parasitoid, and it is the most abundant larval parasitoid associated with the South American tomato pinworm, Tuta absoluta, in recently invaded European areas. The impact of N. tutae on T. absoluta populations was evaluated under greenhouse conditions with and without the presence of a honeydew producer, the aphid Macrosiphum euphorbiae. In addition, laboratory experiments were performed to evaluate the longevity of N. tutae and T. absoluta adults when fed with water, honey or honeydew produced by the aphid. In the greenhouse, N. tutae effectively reduced T. absoluta population by the end of the experiment, and this independently of the presence of the aphid; still the presence of M. euphorbiae led to delayed and reduced T. absoluta population peak when controlled by the parasitoid (there was a fourfold increase in parasitoid density in presence of aphid). The longevity of both N. tutae and T. absoluta females increased in the presence of honeydew (when compared to water only) under laboratory conditions; it hinted that honeydew could be used by an herbivore as T. absoluta. The interactions between the two phytophagous species showed contrasting effects, and this mostly independently of parasitoid presence. Tuta absoluta had no impact on aphid population dynamics. By contrast, the production of T. absoluta larvae was higher in the first part of the experiment as the adults lived longer (feeding on aphid honeydew) and produced more larvae. In the second part of the experiment, there were fewer T. absoluta larvae in the presence of the aphid, likely owing to resource competition and/or negative plant-mediated indirect interactions. We demonstrated that honeydew producers could impact parasitoid-host population dynamics both through direct and indirect interactions and that potential positive effects of a sugar food source toward a pest can be nullified in the long term by other negative effects occurring simultaneously.

Keywords

Eulophidae Biological control Solanaceae Gelechiidae Honeydew 

Notes

Acknowledgements

The authors thank the project ASCII (FP7 IRSES no. 318246) for funding to ND and MRC, the University of Catania (Project 2016–2018 “Emergent Pests and Pathogens and Relative Sustainable Strategies—5A722192113) and the Italian Ministry of Education, University and Research (MIUR) (PRIN project 2015 “BIOPIC” No. 2015BABFCF) for funding to AB and LZ, the project STomP (ARIMNET2 no. 618127) for funding to AB, AVL, LZ and ND, the IPM Innovation Lab (USAID Cooperative Agreement no. AID-OAA-L-15-00001) for funding to ND and MRC, and the EUCLID project (H2020-SFS-2014, no. 633999) for funding to PB, EAD and ND.

Author contributions statement

ND and MRC designed the experiment. MRC, PB, EAD and YW performed the bioassays. ND, AVL, AB and LZ provided technical and material supports. LSM and MRC analyzed the data. MRC, LSM and ND led the writing of the manuscript and all authors read and approved the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Human and animal rights

This article does not contain any studies with human participants or animals (others than insects) performed by any of the authors.

References

  1. Arnó J, Oveja MF, Gabarra R (2018) Selection of flowering plants to enhance the biological control of Tuta absoluta using parasitoids. Biol Control 122:41–50CrossRefGoogle Scholar
  2. Balzan MV, Wäckers FL (2013) Flowers to selectively enhance the fitness of a host-feeding parasitoid: adult feeding by Tuta absoluta and its parasitoid Necremnus artynes. Biol Control 67:21–31CrossRefGoogle Scholar
  3. Barabas G, Michalska-Smith MJ, Allesina S (2016) The effect of intra- and interspecific competition on coexistence in multispecies communities. Am Nat 188:E1–E12PubMedCrossRefPubMedCentralGoogle Scholar
  4. Benelli G, Giunti G, Tena A, Desneux N et al (2017) The impact of adult diet on parasitoid reproductive performance J. Pest Sci 90:807–823CrossRefGoogle Scholar
  5. Biondi A, Chailleux A, Lambion J, Han P et al (2013a) Indigenous natural enemies attacking Tuta absoluta (Lepidoptera: Gelechiidae) in South France. Egypt J Biol Pest Co 23:117–121Google Scholar
  6. Biondi A, Desneux N, Amiens-Desneux E, Siscaro G et al (2013b) Biology and developmental strategies of the Palaearctic parasitoid Bracon nigricans (Hymenoptera: Braconidae) on the Neotropical moth Tuta absoluta (Lepidoptera: Gelechiidae). J Econ Entomol 106:1638–1647PubMedCrossRefPubMedCentralGoogle Scholar
  7. Biondi A, Campolo O, Desneux N, Siscaro G, Palmeri V, Zappalà L (2015) Life stage-dependent susceptibility of Aphytis melinus DeBach (Hymenoptera: Aphelinidae) to two pesticides commonly used in citrus orchards. Chemosphere 128:142–147PubMedPubMedCentralGoogle Scholar
  8. Biondi A, Zappala L, Di Mauro A, Tropea Garzia G, Russo A et al (2016) Can alternative host plant and prey affect phytophagy and biological control by the zoophytophagous mirid Nesidiocoris tenuis? Biocontrol 61:79–90CrossRefGoogle Scholar
  9. Biondi A, Guedes RNC, Wan FH, Desneux N (2018) Ecology, worldwide spread, and management of the invasive South American Tomato Pinworm, Tuta absoluta: past, present, and future. Annu Rev Entomol 63:239–258PubMedCrossRefPubMedCentralGoogle Scholar
  10. Bodino N, Ferracini C, Tavella L (2018) Functional response and age-specific foraging behaviour of Necremnus tutae and N. cosmopterix, native natural enemies of the invasive pest Tuta absoluta in Mediterranean area. J Pest Sci 92:1–12Google Scholar
  11. Bodino N, Ferracini C, Tavella L (2019) Functional response and age-specific foraging behaviour of Necremnus tutae and N. cosmopterix, native natural enemies of the invasive pest Tuta absoluta in Mediterranean area. J Pest Sci 92:1467–1478CrossRefGoogle Scholar
  12. Bompard A, Jaworski CC, Bearez P, Desneux N (2013) Sharing a predator: can an invasive alien pest affect the predation on a local pest? Pop Ecol 55:433–440CrossRefGoogle Scholar
  13. Campos MR, Silva TBM, Silva WM, Silva JE et al (2015) Spinosyn resistance in the tomato borer Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae). J Pest Sci 88:405–412CrossRefGoogle Scholar
  14. Campos MR, Biondi A, Adiga A, Guedes RNC et al (2017) From the Western Palaearctic region to beyond: Tuta absoluta 10 years after invading Europe. J Pest Sci 90:787–796CrossRefGoogle Scholar
  15. Castañé C, Arnó J, Gabarra R, Alomar O (2011) Plant damage to vegetable crops by zoophytophagous mirid predators. Biol Control 59:22–29CrossRefGoogle Scholar
  16. Chailleux A, Bearez P, Pizzol J, Amiens-Desneux E et al (2013) Potential for combined use of parasitoids and generalist predators for biological control of the key invasive tomato pest Tuta absoluta. J Pest Sci 86:533–541CrossRefGoogle Scholar
  17. Chailleux A, Desneux N, Arnó J, Gabarra R (2014a) Biology of two key Palaearctic larval ectoparasitoids when parasitizing the invasive pest Tuta absoluta J. Pest Sci 87:441–448CrossRefGoogle Scholar
  18. Chailleux A, Mohl EK, Teixeira Alves M, Messelink GJ et al (2014b) Natural enemy-mediated indirect interactions among prey species: potential for enhancing biocontrol services in agroecosystems Pest. Manage Sci 70:1769–1779Google Scholar
  19. Desneux N, Decourtye A, Delpuech JM (2007) The sublethal effects of pesticides on beneficial arthropods. Annu Rev Entomol 52:81–106PubMedCrossRefPubMedCentralGoogle Scholar
  20. Desneux N, Wajnberg E, Wyckhuys KAG, Burgio G et al (2010) Biological invasion of European tomato crops by Tuta absoluta: ecology, geographic expansion and prospects for biological control. J Pest Sci 83:197–215CrossRefGoogle Scholar
  21. Desneux N, Luna MG, Guillemaud T, Urbaneja A (2011) The invasive South American tomato pinworm, Tuta absoluta, continues to spread in Afro-Eurasia and beyond: the new threat to tomato world production. J Pest Sci 84:403–408CrossRefGoogle Scholar
  22. Desneux N, Kaplan I, Yoo HJS, Wang S, O’Neil RJ (2019) Temporal synchrony mediates the outcome of indirect effects between prey via a shared predator. Entomol Gen 39:127–136.  https://doi.org/10.1127/entomologia/2019/0824 CrossRefGoogle Scholar
  23. Dixon AF, Kundu R, Kindlmann P (1993) Reproductive effort and maternal age in iteroparous insects using aphids as a model group. Funct Ecol 7:267–272CrossRefGoogle Scholar
  24. Dong Y-C, Han P, Niu C-Y, Zappalà L et al (2018) Nitrogen and water inputs to tomato plant do not trigger bottom-up effects on a leafminer parasitoid through host and non-host exposures Pest. Manage Sci 74:516–522Google Scholar
  25. Frank SD (2010) Biological control of arthropod pests using banker plant systems: past progress and future directions. Biol Control 52:8–16CrossRefGoogle Scholar
  26. Gebiola M, Bernardo U, Ribes A, Gibson GAP (2015) An integrative study of Necremnus Thomson (Hymenoptera: Eulophidae) associated with invasive pests in Europe and North America: taxonomic and ecological implications. Zool J Linn Soc 173:352–423PubMedPubMedCentralCrossRefGoogle Scholar
  27. Guedes RNC, Picanço MC (2012) The tomato borer Tuta absoluta in South America: Pest status management and insecticide resistance. EPPO Bulletin 42:211–216CrossRefGoogle Scholar
  28. Guedes RNC, Roditakis E, Campos MR, Haddi K, Bielza P et al (2019) Insecticide resistance in the tomato pinworm Tuta absoluta: patterns, spread, mechanisms, management and outlook. J Pest Sci 92:1329–1342CrossRefGoogle Scholar
  29. Hagenbucher S, Wäckers FL, Romeis J (2014) Aphid honeydew quality as a food source for parasitoids is maintained in Bt cotton. PLoS ONE 9:e107806PubMedPubMedCentralCrossRefGoogle Scholar
  30. Han P, Zhang YN, Lu ZZ, Wang S, Ma DY et al (2018) Are we ready for the invasion of Tuta absoluta? Unanswered key questions for elaborating an Integrated Pest Management package in Xinjiang, China. Entomol Generalis 38:113–125CrossRefGoogle Scholar
  31. Han P, Bayram Y, Shaltiel-Harpaz L, Sohrabi F, Saji A et al (2019) Tuta absoluta continues to disperse in Asia: damage, ongoing management and future challenges. J Pest Sci 92:1317–1327CrossRefGoogle Scholar
  32. Heimpel GE (2019) Linking parasitoid nectar feeding and dispersal in conservation biological control. Biol Control 132:36–41CrossRefGoogle Scholar
  33. Hendrix DL, Wei Y, Leggett JE (1992) Homopteran honeydew sugar composition is determined by both the insect and plant species. Comp Biochem Physiol B 101:23–27CrossRefGoogle Scholar
  34. Hogervorst PAM, Wäckers FL, Romeis J (2007) Effects of honeydew sugar composition on the longevity of Aphidius ervi. Entomol Exp Appl 122:223–232CrossRefGoogle Scholar
  35. Hullé M, Chaubet B, Turpeau E, Simon JC (2019) Encyclop’Aphid: a website on aphids and their natural enemies. Entomol Gen.  https://doi.org/10.1127/entomologia/2019/0867 CrossRefGoogle Scholar
  36. Inbar M, Gerling D (2007) Plant-mediated interactions between whiteflies, herbivores, and natural enemies. Annu Rev Entomol 53:431–448CrossRefGoogle Scholar
  37. Jactel H, Verheggen F, Thiery D, Escobar-Gutierrez AJ, Thybaud E et al (2019) Alternatives to neonicotinoids. Environ Int 129:423–429PubMedCrossRefPubMedCentralGoogle Scholar
  38. Jam NA, Saber M (2018) Sublethal effects of imidacloprid and pymetrozine on the functional response of the aphid parasitoid, Lysiphlebus fabarum. Entomol Gen 38:173–190Google Scholar
  39. Jaworski CC, Chailleux A, Bearez P, Desneux N (2015) Predator-mediated apparent competition between pests fails to prevent yield loss despite actual pest populations decrease. J Pest Sci 88:793–803CrossRefGoogle Scholar
  40. Jaworski CC, Xiao D, Xu QX, Ramirez-Romero R, Guo XJ et al (2019) Varying the spatial arrangement of synthetic herbivore-induced plant volatiles and companion plants to improve conservation biological control. J Appl Ecol 56:1176–1188CrossRefGoogle Scholar
  41. Jervis MA, Heimpel GE, Ferns PN, Harvey JA et al (2001) Life-history strategies in parasitoid wasps: a comparative analysis of ‘ovigeny’. J Anim Ecol 70:442–458CrossRefGoogle Scholar
  42. Jervis MA, Boggs CL, Ferns PN (2007) Egg maturation strategy and survival trade-offs in holometabolous insects: a comparative approach. Biol J Linn Soc 90:293–302CrossRefGoogle Scholar
  43. Kennedy GG (2003) Tomato, pest, parasitoids, and predators: tritrophic interactions involving the Genus Lycopersicon. Annu Rev Entomol 48:51–72PubMedCrossRefPubMedCentralGoogle Scholar
  44. Kruitwagen A, Beukeboom LW, Wertheim B (2018) Optimization of native biocontrol agents, with parasitoids of the invasive pest Drosophila suzukii as an example. Evolut Appl 11:1473–1497CrossRefGoogle Scholar
  45. Lahiri S, Orr D, Cardoza YJ, Sorenson C (2017) Longevity and fecundity of the egg parasitoid Telenomus podisi provided with different carbohydrate diets. Entomologia Exp et Applicata 162:178–187CrossRefGoogle Scholar
  46. Lee MS, Albajes R, Eizaguirre M (2014) Mating behaviour of female Tuta absoluta (Lepidoptera: Gelechiidae): Polyandry increases reproductive output. J Pest Sci 87:429–439CrossRefGoogle Scholar
  47. Li S, Tan XL, Desneux N, Benelli G, Zhao J et al (2015) Innate positive chemotaxis to pollen from crops and banker plants in predaceous biological control agents: towards new field lures? Scientific Reports 5:12729PubMedPubMedCentralCrossRefGoogle Scholar
  48. Lu YH, Wu KM, Jiang Y, Guo Y, Desneux N (2012) Widespread adoption of Bt cotton and insecticide decrease promotes biocontrol services. Nature 487:362–365PubMedCrossRefPubMedCentralGoogle Scholar
  49. Mansour R, Brévault T, Chailleux A, Cherif A, Grissa-Lebdi K et al (2018) Occurrence, biology, natural enemies and management of Tuta absoluta in Africa. Entomologia Generalis 38:83–112CrossRefGoogle Scholar
  50. McNitt J, Chungbaek YY, Mortveit H, Marathe M, Campos MR et al. (2019) Assessing the multi-pathway threat from an invasive agricultural pest: Tuta absoluta in Asia. Proc Royal Soc B 286(1913):20191159CrossRefGoogle Scholar
  51. Mirhosseini MA, Fathipour Y, Holst N, Soufbaf M, Michaud JP (2019) An egg parasitoid interferes with biological control of tomato leafminer by augmentation of Nesidiocoris tenuis (Hemiptera: Miridae). Biol Control 133:34–40CrossRefGoogle Scholar
  52. Mohammed AAH, Desneux N, Fan YJ, Han P, Ali A et al (2018) Impact of imidacloprid and natural enemies on cereal aphids: integration or ecosystem service disruption? Entomol Gen 37:47–61CrossRefGoogle Scholar
  53. Mohammed AAAH, Monticelli LS, Desneux N, Fan YY, Shi XY et al (2019) Potential for insecticide-mediated shift in ecological dominance between two competing aphid species. Chemosphere 226:651–658PubMedCrossRefPubMedCentralGoogle Scholar
  54. Mollá O, González-Cabrera J, Urbaneja A (2011) The combined use of Bacillus thuringiensis and Nesidiocoris tenuis against the tomato borer Tuta absoluta. Biocontrol 56:883–891CrossRefGoogle Scholar
  55. Monticelli LS, Tena A, Idier M, Amiens-Desneux E, Desneux N (2019) Quality of aphid honeydew for a parasitoid varies as a function of both aphid species and host plant. Biol Control.  https://doi.org/10.1016/j.biocontrol.2019.104099 CrossRefGoogle Scholar
  56. Mooney K, Jones P, Agrawal A (2008) Coexisting congeners: demography, competition, and interactions with cardenolides for two milkweed-feeding aphids. Oikos 117(3):450–458CrossRefGoogle Scholar
  57. Moreira X, Abdala-RobertsL Castagneyrol B (2018) Interactions between plant defence signalling pathways: evidence from bioassays with insect herbivores and plant pathogens. J Ecol 106:2353–2364CrossRefGoogle Scholar
  58. Mouttet R, Bearez P, Thomas C, Desneux N (2011) Phytophagous arthropods and a pathogen sharing a host plant: evidence for indirect plant-mediated interactions. PLoS ONE 6:e18840PubMedPubMedCentralCrossRefGoogle Scholar
  59. Mouttet R, Kaplan I, Bearez P, Amiens-Desneux E et al (2013) Spatiotemporal patterns of induced resistance and susceptibility linking diverse plant parasites. Oecologia 173:1379–1386PubMedCrossRefGoogle Scholar
  60. Naselli M, Biondi A, Tropea Garzia G, Desneux N et al (2017) Insights into food webs associated with the South American tomato pinworm Pest. Manage Sci 73:1352–1357Google Scholar
  61. Parolin P, Bresch C, Poncet C, Desneux N (2012) Functional characteristics of secondary plants for increased pest management. Int J Pest Manag 58:369–377CrossRefGoogle Scholar
  62. Passos LC, Soares MA, Collares LJ, Malagoli I, Desneux N, Carvalho GA (2018) Lethal, sublethal and transgenerational effects caused by insecticides on Macrolophus basicornis, predator of Tuta absoluta. Entomol Gen 38:127–143CrossRefGoogle Scholar
  63. Perdikis D, Lucas E, Garantonakis N, Giatropoulos A et al (2014) Intraguild predation and sublethal interactions between two zoophytophagous mirids, Macrolophus pygmaeus and Nesidiocoris tenuis. Biol Control 70:35–41CrossRefGoogle Scholar
  64. Perovic DJ, Gamez-Virues S, Landis DA, Wäckers F, Gurr GM et al (2018) Managing biological control services through multi-trophic trait interactions: review and guidelines for implementation at local and landscape scales. Biol Rev 93:306–321PubMedCrossRefPubMedCentralGoogle Scholar
  65. Picciau L, Alma A, Ferracini C (2019) Effect of different feeding sources on lifespan and fecundity in the biocontrol agent Torymus sinensis. Biol Control 134:45–52CrossRefGoogle Scholar
  66. Roditakis E, Vasakis E, García-Vidal L, del Rosario Martínez-Aguirre M et al (2018) A four-year survey on insecticide resistance and likelihood of chemical control failure for tomato leaf miner Tuta absoluta in the European/Asian region J. Pest Sci 91:421–435CrossRefGoogle Scholar
  67. Ragsdale DW, Landis DA, Brodeur J, Heimpel GE, Desneux N (2011) Ecology and management of the soybean aphid in North America. Ann Rev Entomol 56:375–399PubMedCrossRefPubMedCentralGoogle Scholar
  68. Sankarganesh E, Firake DM, Sharma B, Verma VK et al (2017) Invasion of the South American Tomato Pinworm, Tuta absoluta, in northeastern India: a new challenge and biosecurity concerns. Entomol Gen 36:335–345CrossRefGoogle Scholar
  69. Soares MA, Passos LC, Campos MR, Collares LJ, Desneux N, Carvalho GA (2019a) Side effects of insecticides commonly used against Tuta absoluta on predator Macrolophus basicornis. J Pest Sci 92:1447–1456CrossRefGoogle Scholar
  70. Soares MA, Campos MR, Passos LC, Haro MM, Carvalho GA et al (2019b) Botanical insecticides against Tuta absoluta, potential for pest management through combination with natural enemies. J Pest Sci 92:1433–1443CrossRefGoogle Scholar
  71. Soler R, Van der Putten WH, Harvey JA, Vet LEM et al (2012) Root Herbivore effects on aboveground multitrophic interactions: patterns: processes and mechanisms. J Chem Ecol 38:755–767PubMedPubMedCentralCrossRefGoogle Scholar
  72. Stout MJ, Thaler JS, Thomma BPHJ (2006) Plant-mediated interactions between pathogenic microorganisms and herbivorous arthropods. Annu Rev Entomol 51:663–689PubMedCrossRefPubMedCentralGoogle Scholar
  73. Tena A, Senft M, Desneux N, Dregni J, Heimpel GE (2018) The influence of aphid-produced honeydew on parasitoid fitness and nutritional state: a comparative study. Basic Appl Ecol 29:55–68CrossRefGoogle Scholar
  74. van Veen FJ, Morris RJ, Godfray HCJ (2005) Apparent competition, quantitative food webs, and the structure of phytophagous insect communities. Annu Rev Entomol 51:187–208CrossRefGoogle Scholar
  75. Verheggen F, Fontus RB (2019) First record of Tuta absoluta in Haiti. Entomologia Generalis 38(4):349–353CrossRefGoogle Scholar
  76. Villemereuil PB, Lopez-Sepulcre A (2011) Consumer functional responses under intra- and inter-specific interference competition. Ecol Model 222:419–426CrossRefGoogle Scholar
  77. Wäckers FL, Romeis J, van Rijn P (2007) Nectar and pollen feeding by insect herbivores and implications for multitrophic interactions. Annu Rev Entomol 52:301–323PubMedCrossRefGoogle Scholar
  78. Wäckers FL, van Rijn PCJ, Heimpel GE (2008) Honeydew as a food source for natural enemies: making the best of a bad meal? Biol Control 45:176–184CrossRefGoogle Scholar
  79. Walling LL (2000) The myriad plant responses to herbivores. J Plant Growth Reg 19:195–216Google Scholar
  80. Wang S-x, Di N, Chen X, Zhang F et al (2018) Life history and functional response to prey density of the flower bug Orius sauteri attacking the fungivorous sciarid fly Lycoriella pleuroti J. Pest Sci 92:1–8Google Scholar
  81. Winkler K, Wäckers FL, Kaufman LV, Larraz V, van Lenteren JC (2009) Nectar exploitation by herbivores and their parasitoids is a function of flower species and relative humidity. Biol Control 50:299–306CrossRefGoogle Scholar
  82. Zappalà L, Biondi A, Alma A, Al-Jboory IJ et al (2013) Natural enemies of the South American moth, Tuta absoluta, in Europe, North Africa and Middle East, and their potential use in pest control strategies. J Pest Sci 86:635–647CrossRefGoogle Scholar
  83. Zhang LP, Zhang GY, Zhang YJ, Zhang WJ et al (2005) Interspecific interactions between Bemisia tabaci (Hem., Aleyrodidae) and Liriomyza sativae (Dipt., Agromyzidae). J Appl Entomol 129:443–446CrossRefGoogle Scholar
  84. Zhao J, Guo X, Tan X, Desneux N, Zappala L et al (2017) Using Calendula officinalis as a floral resource to enhance aphid and thrips suppression by the flower bug Orius sauteri (Hemiptera: Anthocoridae). Pest Manag Sci 73:515–520PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Mateus Ribeiro de Campos
    • 1
  • Lucie S. Monticelli
    • 1
  • Philippe Béarez
    • 1
  • Edwige Amiens-Desneux
    • 1
  • Yusha Wang
    • 1
  • Anne-Violette Lavoir
    • 1
  • Lucia Zappalà
    • 2
  • Antonio Biondi
    • 2
  • Nicolas Desneux
    • 1
    Email author
  1. 1.Université Côte d’Azur, INRA, CNRSUMR ISANiceFrance
  2. 2.University of CataniaDepartment of Agriculture, Food and EnvironmentCataniaItaly

Personalised recommendations