Advertisement

Can interactions among predators alter the natural regulation of an herbivore in a climate change scenario? The case of Tetranychus urticae and its predators in citrus

  • Pablo Urbaneja-Bernat
  • Victoria Ibáñez-Gual
  • Marta Montserrat
  • Ernestina Aguilar-Fenollosa
  • Josep A. JaquesEmail author
Original Paper

Abstract

Climate change can dramatically affect the food web configuration of arthropod communities through its effects on species interactions. We have studied whether these effects could alter the probability of local extinction of three predatory mites naturally associated with the two-spotted spider mite, Tetranychus urticae, in citrus in Spain and, therefore, disrupt the biological control of this phytophagous mite. Laboratory and semi-field results provide evidence that the natural regulation of T. urticae in citrus can be seriously disrupted in a warmer future. On the one hand, T. urticae populations at conditions representative of future hotter and drier summers, could reach higher population densities than forecasted according to its demographic parameters. On the other hand, T. urticae regulation provided by its predators depended on the environmental conditions, was species-specific, and was affected by interspecific interactions. In some cases, one of the predatory mite species in the system could not be recovered. Because there is evidence that the composition of the community under scrutiny is highly sensitive to local habitat conditions, our results can be taken as evidence that local extinctions may occur more frequently in a warmer future and further contribute to an increasingly higher frequency of T. urticae outbreaks.

Keywords

Spider mite Phytoseiulus persimilis Neoseiulus californicus Euseius stipulatus Global warming Food web Phytoseiidae Biological control 

Notes

Acknowledgements

The authors thank M. Piquer (UJI) and A. Sanz (UJI) for technical assistance and J. Calvo (KOPPERT BS, Spain) for supplying N. californicus.

Funding

This study was partially funded by the Spanish Ministry of Economy and Competitiveness, MINECO, (Grants AGL2011-30538-C03-01 and AGL2014-55616-C3-3-R) and the Spanish Ministry of Science and Innovation, MCINN, (Grant EEBB-I-14-08555).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors.

References

  1. Abad-Moyano R, Pina T, Dembilio Ó et al (2009) Survey of natural enemies of spider mites (Acari: Tetranychidae) in citrus orchards in eastern Spain. Exp Appl Acarol 47:49–61.  https://doi.org/10.1007/s10493-008-9193-3 CrossRefGoogle Scholar
  2. Abad-Moyano R, Pina T, Pérez-Panadés J et al (2010a) Efficacy of Neoseiulus californicus and Phytoseiulus persimilis in suppression of Tetranychus urticae in young clementine plants. Exp Appl Acarol 50:317–328.  https://doi.org/10.1007/s10493-009-9318-3 CrossRefGoogle Scholar
  3. Abad-Moyano R, Urbaneja A, Hoffmann D, Schausberger P (2010b) Effects of Euseius stipulatus on establishment and efficacy in spider mite suppression of Neoseiulus californicus and Phytoseiulus persimilis in clementine. Exp Appl Acarol 50:329–341.  https://doi.org/10.1007/s10493-009-9320-9 CrossRefGoogle Scholar
  4. Aguilar-Fenollosa E, Jacas JA (2014) Can we forecast the effects of climate change on entomophagous biological control agents? Pest Manag Sci 70:853–859.  https://doi.org/10.1002/ps.3678 CrossRefGoogle Scholar
  5. Aguilar-Fenollosa E, Ibáñez-Gual V, Pascual-Ruiz S et al (2011a) Effect of ground-cover management on spider mites and their phytoseiid natural enemies in clementine mandarin orchards (I): bottom-up regulation mechanisms. Biol Control 59:158–170.  https://doi.org/10.1016/j.biocontrol.2011.06.013 CrossRefGoogle Scholar
  6. Aguilar-Fenollosa E, Ibáñez-Gual V, Pascual-Ruiz S, Jacas JA (2011b) Effect of ground-cover management on spider mites and their phytoseiid natural enemies in clementine mandarin orchards (II): top–down regulation mechanisms. Biol Control 59:171–179.  https://doi.org/10.1016/j.biocontrol.2011.06.012 CrossRefGoogle Scholar
  7. Aguilar-Fenollosa E, Pascual-Ruiz S, Hurtado MA, Jacas JA (2011c) Efficacy and economics of ground cover management as a conservation biological control strategy against Tetranychus urticae in clementine mandarin orchards. Crop Prot 30:1328–1333.  https://doi.org/10.1016/j.cropro.2011.05.011 CrossRefGoogle Scholar
  8. Aguilar-Fenollosa E, Pina T, Gómez-Martínez MA, Jacas JA (2012) Does host adaptation of Tetranychus urticae populations in clementine orchards with a Festuca arundinacea cover contribute to a better natural regulation of this pest mite? Entomol Exp Appl 144:181–190.  https://doi.org/10.1111/j.1570-7458.2012.01276.x CrossRefGoogle Scholar
  9. Agut B, Gamir J, Jaques JA, Flors V (2015) Tetranychus urticae-triggered responses promote genotype- dependent conspecific repellence or attractiveness in citrus. New Phytol 207:790–804.  https://doi.org/10.1111/nph.13357 CrossRefGoogle Scholar
  10. Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control 19:716–723CrossRefGoogle Scholar
  11. Ali FS (1998) Life tables of Phytoseiulus macropilis (Banks) (Gamasida: Phytoseiidae) at different temperatures. Exp Appl Acarol 22:335–342CrossRefGoogle Scholar
  12. Anderson PK, Cunningham AA, Patel NG et al (2004) Emerging infectious diseases of plants: pathogen pollution, climate change and agrotechnology drivers. Trends Ecol Evol 19:535–544.  https://doi.org/10.1016/j.tree.2004.07.021 CrossRefGoogle Scholar
  13. Aurambout JP, Finlay KJ, Luck J, Beattie GAC (2009) A concept model to estimate the potential distribution of the Asiatic citrus psyllid (Diaphorina citri Kuwayama) in Australia under climate change—a means for assessing biosecurity risk. Ecol Modell 220:2512–2524.  https://doi.org/10.1016/j.ecolmodel.2009.05.010 CrossRefGoogle Scholar
  14. Bañuls J, Serna MD, Legaz F et al (1997) Growth and gas exchange parameters of Citrus plants stressed with different salts. J Plant Physiol 150:194–199.  https://doi.org/10.1016/S0176-1617(97)80202-7 CrossRefGoogle Scholar
  15. Barton BT, Ives AR (2014) Direct and indirect effects of warming on aphids, their predators, and ant mutualists. Ecology 95:2069–2076.  https://doi.org/10.1002/ecy.1851 CrossRefGoogle Scholar
  16. Bayu MSYI, Ullah MS, Takano Y, Gotoh T (2017) Impact of constant versus fluctuating temperatures on the development and life history parameters of Tetranychus urticae (Acari: Tetranychidae). Exp Appl Acarol 72:205–227.  https://doi.org/10.1007/s10493-017-0151-9 CrossRefGoogle Scholar
  17. Birch LC (1948) The intrinsic rate of increase of an insect population. J Anim Ecol 17:15–26CrossRefGoogle Scholar
  18. Blois JL, Zarnetske PL, Fitzpatrick MC, Finnegan S (2013) Climate change and the past, present, and future of biotic interactions. Science 341:499–504.  https://doi.org/10.1126/science.1237184 CrossRefGoogle Scholar
  19. Bounfour M, Tanigoshi LK (2001) Effect of temperature on development and demographic parameters of Tetranychus urticae and Eotetranychus carpini (Acari: Tetranychidae). Ecol Popul Ecol. pp 400–404.  https://doi.org/10.1603/0013-8746
  20. Clarke SM, Cristescu SM, Miersch O et al (2009) Jasmonates act with salicylic acid to confer basal thermotolerance in Arabidopsis thaliana. New Phytol 182:175–187.  https://doi.org/10.1111/j.1469-8137.2008.02735.x CrossRefGoogle Scholar
  21. Cock MJW, Biesmeijer JC, Cannon RJC et al (2013) The implications of climate change for positive contributions of invertebrates to world agriculture. CAB Rev 8:1–47.  https://doi.org/10.1079/PAVSNNR20138028 CrossRefGoogle Scholar
  22. Cornelissen T, Fernandes GW, Vasconcellos-Neto J (2008) Size does matter: variation in herbivory between and within plants and the plant vigor. Oikos 117:1121–1130.  https://doi.org/10.1111/j.2008.0030-1299.16588.x CrossRefGoogle Scholar
  23. Davis AJ, Lawton JH, Shorrocks B, Jenkinson LS (1998) Individualistic species responses invalidate simple physiological models of community dynamics under global environmental change. J Anim Ecol 67:600–612.  https://doi.org/10.1046/j.1365-2656.1998.00223.x CrossRefGoogle Scholar
  24. de Maia AHN, Luiz AJB, Campanhola C (2000) Statistical inference on associated fertility life table parameters using jackknife technique: computational aspects. J Econ Entomol 93:511–518.  https://doi.org/10.1603/0022-0493-93.2.511 CrossRefGoogle Scholar
  25. Diffenbaugh NS, Pal JS, Giorgi F, Gao X (2007) Heat stress intensification in the Mediterranean climate change hotspot. Geophys Res Lett 34:1–6.  https://doi.org/10.1029/2007GL030000 CrossRefGoogle Scholar
  26. English-Loeb GM (1990) Plant drought stress and outbreaks of spider mites. Ecology 71:1401–1411CrossRefGoogle Scholar
  27. Evans EW, Carlile NR, Innes MB, Pitigala N (2013) Warm springs reduce parasitism of the cereal leaf beetle through phenological mismatch. J Appl Entomol 137:383–391.  https://doi.org/10.1111/jen.12028 CrossRefGoogle Scholar
  28. FAO (2017) FAOSTAT. Food and agriculture organization of the United Nations. http://www.fao.org/faostat/en/#data/QC. Accessed 21 Dec 2017
  29. Ferragut F, Pérez Moreno I, Iraola V, Escudero A (2010) Ácaros depredadores de la Familia Phytoseiidae en las plantas cultivadas. Ediciones Agrotécnicas, Madrid, 202 ppGoogle Scholar
  30. Galway KE, Duncan RP, Syrett P, Emberson RM, Sheppard AW (2003) Insect performance and host-plant stress: a review from a biological control perspective. In: Proceeding of the XI international symposium on biological control of weeds, Canberra, Australia, 27 April–2 May 2003, pp 394–399Google Scholar
  31. García-Tejero I, Durán-Zuazo VH, Javier AS, Muriel-Fernández JL (2012) Impact of water stress on citrus yield. Agron Sustain Dev 32:651–659.  https://doi.org/10.1007/s13593-011-0060-y CrossRefGoogle Scholar
  32. Gillespie DR, Nasreen A, Moffat CE et al (2012) Effects of simulated heat waves on an experimental community of pepper plants, green peach aphids and two parasitoid species. Oikos 121:149–159.  https://doi.org/10.1111/j.1600-0706.2011.19512.x CrossRefGoogle Scholar
  33. Gilman SE, Urban MC, Tewksbury J et al (2010) A framework for community interactions under climate change. Trends Ecol Evol 25:325–331.  https://doi.org/10.1016/j.tree.2010.03.002 CrossRefGoogle Scholar
  34. Giorgi F, Lionello P (2008) Climate change projections for the Mediterranean region. Glob Planet Change 63:90–104.  https://doi.org/10.1016/j.gloplacha.2007.09.005 CrossRefGoogle Scholar
  35. Gotoh T, Nozawa M, Yamaguchi K (2004) Prey consumption and functional response of three acarophagous species to eggs of the two-spotted spider mite in the laboratory. Appl Entomol Zool 39:97–105.  https://doi.org/10.1303/aez.2004.97 CrossRefGoogle Scholar
  36. Grafton-Cardwell EE, Ouyang Y, Striggow RA (1997) Predaceous mites (Acari: Phytoseiidae) for control of spider mites (Acari: Tetranychidae) in nursery citrus. Environ Entomol 26:121–130.  https://doi.org/10.1093/ee/26.1.121 CrossRefGoogle Scholar
  37. Gualdi S, Somot S, Li L et al (2012) The CIRCE simulations: a new set of regional climate change projections performed with a realistic representation of the Mediterranean Sea. Bull Am Meteorol Soc 94:65–81.  https://doi.org/10.1175/BAMS-D-11-00136.1 CrossRefGoogle Scholar
  38. Gutiérrez J (1985) Mounting techniques. In: Helle W, Sabelis M (eds) Spider mites: their biology, natural enemies and control, vol 1A. Elsevier, Amsterdam, pp 351–353Google Scholar
  39. Hance T, van Baaren J, Vernon P, Boivin G (2007) Impact of extreme temperatures on parasitoids in a climate change perspective. Annu Rev Entomol 52:107–126.  https://doi.org/10.1146/annurev.ento.52.110405.091333 CrossRefGoogle Scholar
  40. Helle H, Sabelis MW (1985) Spider mites: their biology, natural enemies and control. Elsevier, AmsterdamGoogle Scholar
  41. Inbar M, Doostdar H, Mayer RT (2001) Suitability of stressed and vigorous plants to various insect herbivores. Oikos 94:228–235.  https://doi.org/10.2307/3547567 CrossRefGoogle Scholar
  42. Intergovernmental Panel on Climate Change (IPCC) (2014) Summary for policymakers. In: Climate change 2013 – The physical science basis: working group I contribution to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 1–30.  https://doi.org/10.1017/CBO9781107415324.004
  43. Jacob D, Petersen J, Eggert B et al (2014) EURO-CORDEX: new high-resolution climate change projections for European impact research. Reg Environ Change 14:563–578.  https://doi.org/10.1007/s10113-013-0499-2 CrossRefGoogle Scholar
  44. Jeffs CT, Lewis OT (2013) Effects of climate warming on host-parasitoid interactions. Ecol Entomol 38:209–218.  https://doi.org/10.1111/een.12026 CrossRefGoogle Scholar
  45. Kerry JT, Bellwood DR (2016) Competition for shelter in a high-diversity system: structure use by large reef fishes. Coral Reefs 35:245–252.  https://doi.org/10.1007/s00338-015-1362-3 CrossRefGoogle Scholar
  46. Koricheva J, Larsson S, Haukioja E (1998) Insect performance on experimentally stressed woody plants: a meta-analysis. Annu Rev Entomol 43:195–216.  https://doi.org/10.1146/annurev.ento.43.1.195 CrossRefGoogle Scholar
  47. Larkindale J, Huang B (2005) Effects of abscisic acid, salicylic acid, ethylene and hydrogen peroxide in thermotolerance and recovery for creeping bentgrass. Plant Growth Regul 47:17–28.  https://doi.org/10.1007/s10725-005-1536-z CrossRefGoogle Scholar
  48. Larsson S (1989) Stressful times for the plant stress: insect performance hypothesis. Oikos 56:277–283.  https://doi.org/10.2307/3565348 CrossRefGoogle Scholar
  49. Martínez-Ferrer MT, Jacas JA, Ripollés-Moles JL, Aucejo-Romero S (2006) Approaches for sampling the twospotted spider mite (Acari: Tetranychidae) on clementines in Spain. J Econ Entomol 99:1490–1499.  https://doi.org/10.1603/0022-0493-99.4.1490 CrossRefGoogle Scholar
  50. Matthews SA, Wong MYL (2015) Temperature-dependent resolution of conflict over rank within a size-based dominance hierarchy. Behav Ecol 26:947–958.  https://doi.org/10.1093/beheco/arv042 CrossRefGoogle Scholar
  51. McMurtry JA, Croft BA (1997) Life-styles of Phytoseiid mites and their roles in biological control. Annu Rev Entomol 42:291–321.  https://doi.org/10.1146/annurev.ento.42.1.291 CrossRefGoogle Scholar
  52. McMurtry JA, Moraes GJDE, Sourassou NF (2013) Revision of the lifestyles of phytoseiid mites (Acari: Phytoseiidae). Syst Appl Acarol 18:297–320.  https://doi.org/10.11158/saa.18.4.1 Google Scholar
  53. Montserrat M, de la Peña F, Hormaza JI et al (2008) How do Neoseiulus californicus (Acari: Phytoseiidae) females penetrate densely webbed spider mite nests? Exp Appl Acarol 44:101–106.  https://doi.org/10.1007/s10493-008-9137-y CrossRefGoogle Scholar
  54. Montserrat M, Sahún R, Guzmán C (2013) Can climate change jeopardize predator control of invasive herbivore species? A case study in avocado agro-ecosystems in Spain. Exp Appl Acarol 59:27–42.  https://doi.org/10.1007/s10493-012-9560-y CrossRefGoogle Scholar
  55. Narouei-Khandan HA, Halbert SE, Worner SP, van Bruggen AHC (2016) Global climate suitability of citrus huanglongbing and its vector, the Asian citrus psyllid, using two correlative species distribution modeling approaches, with emphasis on the USA. Eur J Plant Pathol 144:655–670.  https://doi.org/10.1007/s10658-015-0804-7 CrossRefGoogle Scholar
  56. Navarra A, Tubiana L (2013) Regional assessment of climate change in the Mediterranean. Volume 2: agriculture, forests and ecosystem services and people. Springer, DordrechtGoogle Scholar
  57. Palevsky E, Walzer A, Gal S, Schausberger P (2008) Evaluation of dry-adapted strains of the predatory mite Neoseiulus californicus for spider mite control on cucumber, strawberry and pepper. Exp Appl Acarol 45:15–27.  https://doi.org/10.1007/s10493-008-9162-x CrossRefGoogle Scholar
  58. Paranychianakis NV, Chartzoulakis KS (2005) Irrigation of Mediterranean crops with saline water: from physiology to management practices. Agric Ecosyst Environ 106:171–187.  https://doi.org/10.1016/j.agee.2004.10.006 CrossRefGoogle Scholar
  59. Pascual-Ruiz S, Aguilar-Fenollosa E, Ibáñez-Gual V et al (2014) Economic threshold for Tetranychus urticae (Acari: Tetranychidae) in clementine mandarins Citrus clementina. Exp Appl Acarol 62:337–362.  https://doi.org/10.1007/s10493-013-9744-0 CrossRefGoogle Scholar
  60. Pérez-Sayas C, Pina T, Gómez-Martínez MA et al (2015) Disentangling mite predator-prey relationships by multiplex PCR. Mol Ecol Resour 15:1330–1345.  https://doi.org/10.1111/1755-0998.12409 CrossRefGoogle Scholar
  61. Pérez-Sayas C, Aguilar-Fenollosa E, Hurtado MA et al (2017) When do predatory mites (Phytoseiidae) attack? Understanding their diel and seasonal predation patterns. Insect Sci.  https://doi.org/10.1111/1744-7917.12495 Google Scholar
  62. Pieterse CMJ, Leon-Reyes A, Van Der Ent S, Van Wees SCM (2009) Networking by small-molecule hormones in plant immunity. Nat Chem Biol 5:308–316.  https://doi.org/10.1038/nchembio.164 CrossRefGoogle Scholar
  63. Pina T, Argolo PS, Urbaneja A, Jacas JA (2012) Effect of pollen quality on the efficacy of two different life-style predatory mites against Tetranychus urticae in citrus. Biol Control 61:176–183.  https://doi.org/10.1016/j.biocontrol.2012.02.003 CrossRefGoogle Scholar
  64. Rodríguez-Gamir J, Primo-Millo E, Forner JB, Forner-Giner MA (2010) Citrus rootstock responses to water stress. Sci Hortic (Amsterdam) 126:95–102.  https://doi.org/10.1016/j.scienta.2010.06.015 CrossRefGoogle Scholar
  65. Roy M, Brodeur J, Cloutier C (2003) Temperature and sex allocation in a spider mite. Oecologia 135:322–326.  https://doi.org/10.1007/s00442-002-1160-9 CrossRefGoogle Scholar
  66. Sabelis MW, Bakker FM (1992) How predatory mites cope with the web of their tetranychid prey: a functional view on dorsal chaetotaxy in the Phytoseiidae. Exp Appl Acarol 16:203–225.  https://doi.org/10.1007/BF01193804 CrossRefGoogle Scholar
  67. Schausberger P, Walzer A (2001) Combined versus single species release of predaceous mites: predator-predator interactions and pest suppression. Biol Control 20:269–278.  https://doi.org/10.1006/bcon.2000.0908 CrossRefGoogle Scholar
  68. Shimoda T, Kishimoto H, Takabayashi J et al (2009) Comparison of thread-cutting behavior in three specialist predatory mites to cope with complex webs of Tetranychus spider mites. Exp Appl Acarol 47:111–120.  https://doi.org/10.1007/s10493-008-9205-3 CrossRefGoogle Scholar
  69. Skirvin DJ, Fenlon JS (2003) The effect of temperature on the functional response of Phytoseiulus persimilis (Acari: Phytoseiidae). Exp Appl Acarol 31:37–49CrossRefGoogle Scholar
  70. Stavrinides MC, Daane KM, Lampinen BD, Mills NJ (2010) Plant water stress, leaf temperature, and spider mite (Acari: Tetranychidae) outbreaks in California vineyards. Environ Entomol 39:1232–1241.  https://doi.org/10.1603/en09288 CrossRefGoogle Scholar
  71. Stireman JO, Dyer LA, Janzen DH et al (2005) Climatic unpredictability and parasitism of caterpillars: implications of global warming. Proc Natl Acad Sci 102:17384–17387.  https://doi.org/10.1073/pnas.0508839102 CrossRefGoogle Scholar
  72. Thomson LJ, Macfadyen S, Hoffmann A (2010) Predicting the effects of climate change on natural enemies of agricultural pests. Biol Control 52:296–306.  https://doi.org/10.1016/j.biocontrol.2009.01.022 CrossRefGoogle Scholar
  73. Tylianakis JM, Didham RK, Bascompte J, Wardle DA (2008) Global change and species interactions in terrestrial ecosystems. Ecol Lett 11:1351–1363.  https://doi.org/10.1111/j.1461-0248.2008.01250.x CrossRefGoogle Scholar
  74. Urban MC, Bocedi G, Hendry AP et al (2016) Improving the forecast for biodiversity under climate change. Science 353:1114–1122.  https://doi.org/10.1126/science.aad8466 CrossRefGoogle Scholar
  75. Vangansbeke D, De Schrijver L, Spranghers T et al (2013) Alternating temperatures affect life table parameters of Phytoseiulus persimilis, Neoseiulus californicus (Acari: Phytoseiidae) and their prey Tetranychus urticae (Acari: Tetranychidae). Exp Appl Acarol 61:285–298.  https://doi.org/10.1007/s10493-013-9704-8 CrossRefGoogle Scholar
  76. Vangansbeke D, Audenaert J, Nguyen DT et al (2015) Diurnal temperature variations affect development of a herbivorous arthropod pest and its predators. PLoS ONE 10:e0124898.  https://doi.org/10.1371/journal.pone.0124898 CrossRefGoogle Scholar
  77. Vela JM, Wong E, Jaques JA et al (2017) Mite diversity (Acari: Tetranychidae, Tydeidae, Iolinidae, Phytoseiidae) and within-tree distribution in citrus orchards in southern Spain, with special reference to Eutetranychus orientalis. Exp Appl Acarol 73:191–207.  https://doi.org/10.1007/s10493-017-0180-4 CrossRefGoogle Scholar
  78. Walzer A, Castagnoli M, Simoni S et al (2007) Intraspecific variation in humidity susceptibility of the predatory mite Neoseiulus californicus: survival, development and reproduction. Biol Control 41:42–52.  https://doi.org/10.1016/j.biocontrol.2006.11.012 CrossRefGoogle Scholar
  79. Wang L, Li L (2006) Salicylic acid-induced heat or cold tolerance in relation to Ca2+ homeostasis and antioxidant systems in young grape plants. Plant Sci 170:685–694.  https://doi.org/10.1016/j.plantsci.2005.09.005 CrossRefGoogle Scholar
  80. White TCR (1969) An index to measure weather-induced stress of trees associated with outbreaks of psyllids in Australia. Ecology 50:905–909.  https://doi.org/10.2307/1933707 CrossRefGoogle Scholar
  81. White TCR (1984) The abundance of invertebrate herbivores in relation to the availability of nitrogen in stressed food plants. Oecologia 63:90–105.  https://doi.org/10.1007/BF00379790 CrossRefGoogle Scholar
  82. White TCR (1993) Plants as food for herbivores. In: The inadequate environment. Springer, BerlinGoogle Scholar
  83. White TCR (2009) Plant vigour versus plant stress: a false dichotomy. Oikos 118:807–808.  https://doi.org/10.1111/j.1600-0706.2009.17495.x CrossRefGoogle Scholar
  84. Ximénez-Embún MG, Ortego F, Castañera P (2016) Drought-stressed tomato plants trigger bottom-up effects on the invasive Tetranychus evansi. PLoS ONE 11:1–19.  https://doi.org/10.1371/journal.pone.0145275 CrossRefGoogle Scholar
  85. Zandalinas SI, Rivero RM, Martínez V et al (2016) Tolerance of citrus plants to the combination of high temperatures and drought is associated to the increase in transpiration modulated by a reduction in abscisic acid levels. BMC Plant Biol 16:1–16.  https://doi.org/10.1186/s12870-016-0791-7 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Unitat Associada d’Entomologia UJI-IVIA, Departament de Ciències Agràries i del Medi NaturalUniversitat Jaume I, UJICastelló de la PlanaSpain
  2. 2.Departament de MatemàtiquesUniversitat Jaume I, UJICastelló de la PlanaSpain
  3. 3.Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”-Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC)Algarrobo-CostaSpain
  4. 4.Departamento de CalidadTorres Hnos. y Sucs. S.A.UAlmenaraSpain

Personalised recommendations