Essential oils as active ingredients of botanical insecticides against aphids

  • Chaieb Ikbal
  • Roman PavelaEmail author


Aphids are significant pests of almost all current cultivated plants. Protection against aphids is based predominantly on the application of synthetic insecticides; however, these insecticides have a negative impact on nontarget organisms, including humans. Therefore, new plant protection alternatives have been sought. Essential oils (EOs) isolated from plants are among the substances generally considered safe for the environment and health and can thus be used as active substances in new botanical insecticides. This is why the efficacy of EOs has also been studied using laboratory methods against some aphid species in contact and fumigation tests. This review summaries the present knowledge of acute toxicity of EOs against aphids. Despite the methodological non-uniformity of published papers, it was possible to select 25 plant species whose EOs have shown LD50 below 1 µl (µg) ml−1 in contact tests and 16 plant species whose EOs have shown LC50 below 1 µl l−1 in fumigation tests or have resulted in aphid mortality over 90% upon application of 2 µl l−1. EOs from only five plant species (Foeniculum vulgare, Mentha piperita, M. pulegium, Ocimum basilicum, and Pimpinella anisum) have shown excellent efficacy in both contact and fumigation tests and can thus be considered an optimal source of active substances for the development of botanical insecticides against aphids. At the same time, methodological principles for primary screening of acute toxicity of the EOs against aphids were critically discussed, including potential directions of further research in this field of knowledge.


Essential oils Aphids Botanical insecticides Insecticidal activity 



The author RP would like to thank the Ministry of Agriculture of the Czech Republic for financial support of the botanical pesticide and basic substances research. Financial support for this work was provided by the Ministry of Agriculture of the CR (Project No. QK1910072).

Compliance with ethical standards

Conflict of interest

The authors declare no competing interests.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.


  1. Abramson CI, Wanderley PA, Wanderley MJA, Miná AJS, de Souza OB (2006) Effect of essential oil from citronella and alfazema on fennel aphids Hyadaphis foeniculi Passerini (Hemiptera: Aphididae) and its predator Cycloneda sanguinea L. (Coleoptera: Coccinelidae). Am J Environ Sci 3:9–10Google Scholar
  2. Adebisi O, Dolma SK, Verma PK, Singh B, Reddy SGE (2018) Volatile, non-volatile composition and insecticidal activity of Eupatorium adenophorum Spreng against diamondback moth, Plutella xylostella (L.), and aphid, Aphis craccivora. Toxin Rev. CrossRefGoogle Scholar
  3. Aharoni A, Jongsma MA, Bouwmeester HJ (2005) Volatile science? Metabolic engineering of terpenoids in plants. Trends Plant Sci 10:594–602CrossRefPubMedGoogle Scholar
  4. Akhtar Y, Isman MB, Lee C-H, Lee S-G, Lee H-S (2012) Toxicity of quinones against two-spotted spider mite and three species of aphids in laboratory and greenhouse conditions. Ind Crops Prod 37:536–541CrossRefGoogle Scholar
  5. Al-Antary TM, Belghasem IH, Alaraj SA (2017a) Toxicity of anise oil against the green peach aphid Myzus persice Sulzer (Homoptera: Aphideceae) using four solvents. Fresen Environ Bull 26:3705–3710Google Scholar
  6. Al-Antary TM, Belghasem IH, Alaraj SA (2017b) Evaluation of eco-friendly lemon oil against the green peach aphid Myzus persicae Sulzer (Homoptera: Aphididae) using four solvents. Fresenius Environ Bull 26:8298–8303Google Scholar
  7. Al-Antary TM, Belghasem IH, Alaraj SA (2017c) Effect of mint oil against the green peach aphid Myzus persicae Sulzer (Homoptera: Aphididae) using four solvents. Adv Environ Biol 11:61–67Google Scholar
  8. Albouchi F, Ghazouani N, Souissi R, Abderrabba M, Boukhris-Bouhachem S (2018) Aphidicidal activities of Melaleuca styphelioides Sm. essential oils on three citrus aphids: Aphis gossypii Glover; Aphis spiraecola Patch and Myzus persicae (Sulzer). S Afr J Bot 117:149–154CrossRefGoogle Scholar
  9. Ateyyat M, Abdel-Wali M, Al-Antary T (2012) Toxicity of five medicinal plant oils to woolly apple aphid, Eriosoma lanigerum (Homoptera: Aphididae). Aust J Basic Appl Sci 6:66–72Google Scholar
  10. Attia S, Lognay G, Heuskin S, Hance T (2016) Insecticidal activity of Lavandula angustifolia Mill. against the pea aphid Acyrtosiphum pisum. J Entomol Zool Stud 4:118–122Google Scholar
  11. Azevedo SG, Mar JM, da Silva LS, França LP, Machado MB, Tadei WP, Bezerra JA, dos Santos AL, Sanches EA (2018) Bioactivity of Licaria puchury-major essential oil against Aedes aegypti, Tetranychus urticae and Cerataphis lataniae. Rec Nat Prod 12:229–238CrossRefGoogle Scholar
  12. Bailen M, Julio LF, Diaz CE, Sanz J, Martínez-Díaz RA, Cabrera R, Burillo J, Gonzalez-Coloma A (2013) Chemical composition and biological effects of essential oils from Artemisia absinthium L. cultivated under different environmental conditions. Ind Crops Prod 49:102–107CrossRefGoogle Scholar
  13. Barra A (2009) Factors affecting chemical variability of essential oils: a review of recent developments. Nat Prod Commun 4:1147–1154PubMedGoogle Scholar
  14. Bass C, Field LM (2011) Gene amplification and insecticide resistance. Pest Manag Sci 67:886–890CrossRefPubMedGoogle Scholar
  15. Bass C, Puinean AM, Zimmer CT, Denholm I, Field LM, Foster SP, Gutbrod O, Nauen R, Slater R, Williamson MS (2014) The evolution of insecticide resistance in the peach potato aphid, Myzus persicae. Insect Biochem Mol Biol 51:41–51CrossRefPubMedGoogle Scholar
  16. Beale MH, Birkett MA, Bruce TJ, Chamberlain K, Field LM, Huttly AK, Martin JL, Parker R, Phillips AL, Pickett JA, Prosser IM, Shewry PR, Smart LE, Wadhams LJ, Woodcock CM, Zhang Y (2006) Aphid alarm pheromone produced by transgenic plants affects aphid and parasitoid behavior. Proc Natl Acad Sci USA 103:10509–10513CrossRefPubMedGoogle Scholar
  17. Behi F, Bachrouch O, Fekih IB, Boukhris-Bouhachem S (2017) Insecticidal and synergistic activities of two essential oils from Pistacia lentiscus and Mentha pulegium against the green peach aphid Myzus persicae. Tunis J Plant Prot 12:53–65Google Scholar
  18. Benelli G, Pavela R, Canale A, Mehlhorn H (2016) Tick repellents and acaricides of botanical origin: A green roadmap to control tick-borne diseases? Parasitol Res 115:2545–2560CrossRefPubMedGoogle Scholar
  19. Benelli G, Pavela R, Iannarelli R, Petrelli R, Cappellacci L, Cianfaglione K, Afshar FH, Nicoletti M, Canale A, Maggi F (2017) Synergized mixtures of Apiaceae essential oils and related plant-borne compounds: larvicidal effectiveness on the filariasis vector Culex quinquefasciatus Say. Ind Crops Prod 96:186–195CrossRefGoogle Scholar
  20. Benelli G, Pavela R, Giordani C, Casettari L, Curzi G, Cappellacci L, Petrelli R, Maggi F (2018a) Acute and sub-lethal toxicity of eight essential oils of commercial interest against the filariasis mosquito Culex quinquefasciatus and the housefly Musca domestica. Ind Crops Prod 112:668–680CrossRefGoogle Scholar
  21. Benelli G, Pavela R, Petrelli R, Cappellacci L, Santini G, Fiorini D, Sut S, Dall’Acqua S, Canale A, Maggi F (2018b) The essential oil from industrial hemp (Cannabis sativa L.) by-products as an effective tool for insect pest management in organic crops. Ind Crops Prod 122:308–315CrossRefGoogle Scholar
  22. Benelli G, Pavela R, Petrelli R, Cappellacci L, Canale A, Senthil-Nathan S, Maggi F (2018c) Not just popular spices! Essential oils from Cuminum cyminum and Pimpinella anisum are toxic to insect pests and vectors without affecting non-target invertebrates. Ind Crops Prod 124:236–243CrossRefGoogle Scholar
  23. Blackman RK, Eastop VF (2017) Taxonomic issues. In: van Emden H, Harrington R (eds) Aphids as crop pests, 2nd edn. CABI Publishing, Wallingford, pp 1–36Google Scholar
  24. Castilhos RV, Grutzmacher AD, Coats JR (2018) Acute toxicity and sublethal effects of terpenoids and essential oils on the predator Chrysoperla externa (Neuroptera: Chrysopidae). Neotrop Entomol 47:311–317CrossRefPubMedGoogle Scholar
  25. Chaieb I, Zarrad K, Sellam R, Tayeb W, Hammouda AB, Laarif A, Bouhachem S (2017) Chemical composition and aphicidal potential of Citrus aurantium peel essential oils. Entomol Generalis 37:63–75CrossRefGoogle Scholar
  26. Chen Y, Li Y, Su Z, Xian J (2017) Insecticidal and repellent action of pogostone against Myzus persicae (Hemiptera: Aphididae). Fla Entomol 100:346–349CrossRefGoogle Scholar
  27. Chopa CS, Descamps LR (2012) Composition and biological activity of essential oils against Metopolophium dirhodum (Hemiptera: Aphididae) cereal crop pest. Pest Manag Sci 68:1492–1500CrossRefPubMedGoogle Scholar
  28. Cloyd RA, Galle CL, Keith SR, Kalscheur NA, Kemp KE (2009) Effect of commercially available plant-derived essential oil products on arthropod pests. J Econ Entomol 102:1567–1579CrossRefPubMedGoogle Scholar
  29. Costa LG (2018) Organophosphorus compounds at 80: some old and new issues. Toxicol Sci 162:24–35CrossRefPubMedGoogle Scholar
  30. Costa AV, Pinheiro PF, Rondelli VM, de Queiroz VT, Tuler AC, Brito KB, Stinguel P, Pratissoli D (2013) Cymbopogon citratus (Poaceae) essential oil on Frankliniella schultzei (Thysanoptera: Thripidae) and Myzus persicae (Hemiptera: Aphididae) [Óleo essencial de Cymbopogon citratus (Poaceae) sobre Frankliniella schultzei (Thysanoptera: Thripidae) e Myzus persicae (Hemiptera: Aphididae)]. Biosci J 29:1840–1847Google Scholar
  31. Costa AV, Pinheiro PF, de Queiroz VT, Rondelli VM, Marins AK, Valbon WR, Pratissoli D (2015) Chemical composition of essential oil from Eucalyptus citriodora leaves and insecticidal activity against Myzus persicae and Frankliniella schultzei. J Essent Oil Bear Plants 18:374–381CrossRefGoogle Scholar
  32. Czerniewicz P, Chrzanowski G, Sprawka I, Sytykiewicz H (2018) Aphicidal activity of selected Asteraceae essential oils and their effect on enzyme activities of the green peach aphid, Myzus persicae (Sulzer). Pestic Biochem Physiol 145:84–92CrossRefPubMedGoogle Scholar
  33. Dedryver CA, Le Ralec A, Fabre F (2010) The conflicting relationships between aphids and men: a review of aphid damage and control strategies. C R Biol 333:539–553CrossRefPubMedGoogle Scholar
  34. Derocles SAP, Le Ralec A, Besson MM, Maret M, Walton A, Evans DM, Plantegenest M (2014) Molecular analysis reveals high compartmentalization in aphid–primary parasitoid networks and low parasitoid sharing between crop and noncrop habitats. Mol Ecol 23:3900–3911CrossRefPubMedGoogle Scholar
  35. Digilio MC, Mancini E, Voto E, De Feo V (2008) Insecticide activity of Mediterranean essential oils. J Plant Int 3:17–23Google Scholar
  36. Ebadollahi A, Davari M, Razmjou J, Naseri B (2017) Separate and combined effects of Mentha piperata and Mentha pulegium essential oils and a pathogenic fungus Lecanicillium muscarium against Aphis gossypii (Hemiptera: Aphididae). J Econom Entomol 110:1025–1030CrossRefGoogle Scholar
  37. Ebrahimi M, Safaralizade MH, Valizadegan O (2013a) Contact toxicity of Azadirachta indica (Adr. Juss.), Eucalyptus camaldulensis (Dehn.) and Laurus nobilis (L.) essential oils on mortality cotton aphids, Aphis gossypii Glover (Hem.: Aphididae). Arch Phytopathol Plant Prot 46:2153–2162CrossRefGoogle Scholar
  38. Ebrahimi M, Safaralizade MH, Valizadegan O, Amin BHH (2013b) Efficacy of three plant essential oils, Azadirachta indica (Adr. Juss.), Eucalyptus camaldulensis (Dehn.) and Laurus nobilis (L.) on mortality cotton aphids, Aphis gossypii Glover (Hem: Aphididae). Arch Phytopathol Plant Prot 46:1093–1101CrossRefGoogle Scholar
  39. Faraone N, Hillier NK, Cutler GC (2015) Plant essential oils synergize and antagonize toxicity of different conventional insecticides against Myzus persicae (Hemiptera: Aphididae). PLoS ONE 10:e0127774. CrossRefPubMedPubMedCentralGoogle Scholar
  40. Gilabert A, Simon JC, Mieuzet L, Halkett F, Stoeckel S, Plantegenest M, Dedryver CA (2009) Climate and agricultural context shape reproductive mode variation in an aphid crop pest. Mol Ecol 18:3050–3061CrossRefPubMedGoogle Scholar
  41. Giner M, Avilla J, De Zutter N, Ameye M, Balcells M, Smagghe G (2013) Insecticidal and repellent action of allyl esters against Acyrthosiphon pisum (Hemiptera: Aphididae) and Tribolium castaneum (Coleoptera: Tenebrionidae). Ind Crops Prod 47:63–68CrossRefGoogle Scholar
  42. Górski R, Tomczak M (2010) Usefulness of natural essential oils in the control of foxglove aphid (Aulacorthum solani Kalt.) occurring on eggplant (Solanum melongena L.). Chem Eng 17:345–349Google Scholar
  43. Górski R, Sobieralski K, Siwulski M (2016) The effect of hemp essential oil on mortality Aulacorthum solani Kalt. and Tetranychus urticae Koch. Ecol Chem Eng S 23:505–511Google Scholar
  44. Hall DG, Borovsky D, Chauhan KR, Shatters RG (2018) An evaluation of mosquito repellents and essential plant oils as deterrents of Asian citrus psyllid. Crop Prot 108:87–94CrossRefGoogle Scholar
  45. Hasanshahi G, Abbasipour H, Jahan F, Askarianzadeh A, Karimi J, Rastegar F (2016) Fumigant toxicity and nymph production deterrence effect of three essential oils against two aphid species in the laboratory condition. J Essent Oil Bear Plants 19:706–711CrossRefGoogle Scholar
  46. Hu H, Li JJ, Delatte T, Vervoort J, Gao LP, Verstappen F, Xiong W, Gan JP, Jongsma MA, Wang CY (2018) Modification of chrysanthemum odour and taste with chrysanthemol synthase induces strong dual resistance against cotton aphids. Plants Biotechnol J 16:1434–1445CrossRefGoogle Scholar
  47. Hughes RD (1963) Population dynamics of the cabbage aphid, Brevicoryne brassicae (L.). J Anim Ecol 32:393–424CrossRefGoogle Scholar
  48. Isman MB (2015) A renaissance for botanical insecticides? Pest Manag Sci 71:1587–1590CrossRefPubMedGoogle Scholar
  49. Isman MB, Grieneisen ML (2014) Botanical insecticide research: many publications, limited useful data. Trends Plant Sci 19:140–145CrossRefPubMedGoogle Scholar
  50. Jahan F, Abbasipour H, Hasanshahi G (2016) Fumigant toxicity and nymph production deterrence effect of five essential oils on adults of the cabbage aphid, Brevicoryne brassicae L. (Hemiptera: Aphididae). J Essent Oil Bear Plants 19:140–147CrossRefGoogle Scholar
  51. Jalaei Z, Fattahi M, Aramideh S (2015) Allelopathic and insecticidal activities of essential oil of Dracocephalum kotschyi Boiss. from Iran: a new chemotype with highest limonene-10-al and limonene. Ind Crops Prod 73:109–117CrossRefGoogle Scholar
  52. Jarošová J, Beoni E, Kundu JK (2016) Barley yellow dwarf virus resistance in cereals: approaches, strategies and prospects. Field Crops Res 198:200–214CrossRefGoogle Scholar
  53. Jiang H, Wang J, Li Song, Cao X, Yao X, Tang F, Yue Y (2016) GC × GC–TOFMS analysis of essential oils composition from leaves, twigs and seeds of Cinnamomum camphora L. Presl and their insecticidal and repellent activities. Molecules 21:423CrossRefPubMedPubMedCentralGoogle Scholar
  54. Kahan A, Padín S, Ricci M, Ringuelet J, Cerimele E, Ré S, Henning C, Basso I (2008) Toxic activity of laurel essential oil and cineole on Brevicoryne brassicae L. over cabbage. Rev Fac Cienc Agrar 40:41–48Google Scholar
  55. Kassimi A, El Watik L (2012) Comparison of insecticide effect of plant extracts on aphids of watermelon and green alfalfa. Sustain Agric Res 1:301–307CrossRefGoogle Scholar
  56. Kassimi A, El Watik L, Mohammed M, Hamid C (2017) Mortality of watermelon aphids by vegetable and essential oil with a chemical synthetic product. Int J Adv Res 5:2804–2808CrossRefGoogle Scholar
  57. Khaled W, Fekih BI, Chaieb I, Souissi R, Harbaoui I, Boukhris-Bouhachem S (2017) Insecticidal activity assessment of Thymus capitatus essential oils in combination with natural abrasives against Myzus persicae. Tunis J Plant Prot 12:49–59Google Scholar
  58. Kimbaris AC, Papachristos DP, Michaelakis A, Martinou AF, Polissiou MG (2010) Toxicity of plant essential oil vapours to aphid pests and their coccinellid predators. Biocontrol Sci Technnol 20:411–422CrossRefGoogle Scholar
  59. Koorki Z, Shahidi-Noghabi S, Mahdian K, Pirmaoradi M (2018) Chemical composition and insecticidal properties of several plant essential oils on the melon aphid, Aphis gossypii Glover (Hemiptera: Aphididae). J Essent Oil Bear Plants 21:420–429CrossRefGoogle Scholar
  60. Kumar V, Mathela CS (2017) Toxicity and repellent effect of essential oils and a major component against Lipaphis erysimi. J Crop Prot 6:15–23CrossRefGoogle Scholar
  61. Lange BM, Ahkami A (2013) Metabolic engineering of plant monoterpenes, sesquiterpenes and diterpenes-current status and future opportunities. Plant Biotechnol J 11:169–196CrossRefPubMedGoogle Scholar
  62. Machalova Z, Sajfrtova M, Pavela R, Topiar M (2015) Extraction of botanical pesticides from Pelargonium graveolens using supercritical carbon dioxide. Ind Crops Prod 67:310–317CrossRefGoogle Scholar
  63. Machial CM (2010) Efficacy of plant essential oils and detoxification mechanisms in Choristoneura rosaceana Trichoplusia ni, Dysaphis plantaginea and Myzus persicae. University of British Columbia, Vancouver. CrossRefGoogle Scholar
  64. Machiani MA, Javanmard A, Morshedloo MR, Maggi F (2018) Evaluation of yield, essential oil content and compositions of peppermint (Mentha piperita L.) intercropped with faba bean (Vicia faba L.). J Clean Prod 171:529–537CrossRefGoogle Scholar
  65. Mar JM, Silva LS, Sidney Azevedo SG, França LP, Goes AF, dos Santos AL, Bezerra JA, Nunomura RCS, Machado MB, Sanches EA (2018) Lippia origanoides essential oil: an efficient alternative to control Aedes aegypti, Tetranychus urticae and Cerataphis lataniae. Ind Crops Prod 111:292–297CrossRefGoogle Scholar
  66. Modarres Najafabadi SS, Bagheri A, Seyahooei MA, Zamani H, Goodarzi A (2018) Effects of thyme and rosemary essential oils on population growth parameters of Macrosiphum rosae (Hemiptera: Aphididae) on cut flower rose. J Crop Prot 7:51–63Google Scholar
  67. Montefuscoli AR, Gonzalez JOW, Palma SD, Ferrero AA, Band BF (2014) Design and development of aqueous nanoformulations for mosquito control. Parasitol Res 113:793–800CrossRefPubMedGoogle Scholar
  68. Motazedian N, Aleosfoor M, Davoodi A, Bandani AR (2014) Insecticidal activity of five medicinal plant essential oils against the cabbage aphid, Brevicoryne brassicae. J Crop Prot 3:137–146Google Scholar
  69. Mousa KM, Khodeir IA, El-Dakhakhni TN, Youssef AE (2013) Effect of garlic and eucalyptus oils in comparison to organophosphat insecticides against some piercing-sucking faba bean insect pests and natural enemies populations. Acad J Biol Sci 5:21–27Google Scholar
  70. Oulebsir-Mohandkaci H, Kaki SA, Doumandji-Mitiche B (2015) Essential oils of two Algerian aromatic plants Thymus vulgaris and Eucalyptus globulus as bio-insecticides against aphid Myzus persicae (Homoptera: Aphididae). Wulf J 22:185–197Google Scholar
  71. Park B, Lee MJ, Lee SK, Lee SB, Jeong IH, Park SK, Jeon YJ, Lee HS (2017) Insecticidal activity of coriander and cinnamon oils prepared by various methods against three species of agricultural pests (Myzus persicae, Tetranychus urticae and Plutella xylostella). J Appl Biol Chem 60:137–140Google Scholar
  72. Pascual-Villalobos M, Cantó-Tejero M, Vallejo R, Guirao P, Rodríguez-Rojo S, Cocero MJ (2017) Use of nanoemulsions of plant essential oils as aphid repellents. Ind Crops Prod 110:45–57CrossRefGoogle Scholar
  73. Pavela R (2006) Insecticidal activity of essential oils against cabbage aphid Brevicoryne brassicae. J Essent Oil Bear Plants 9:99–106CrossRefGoogle Scholar
  74. Pavela R (2014a) Insecticidal properties of Pimpinella anisum essential oils against the Culex quinquefasciatus and the non-target organism Daphnia magna. J Asia Pac Entomol 17:287–293CrossRefGoogle Scholar
  75. Pavela R (2014b) Acute, synergistic and antagonistic effects of some aromatic compounds on the Spodoptera littoralis Boisd. (Lep., Noctuidae) larvae. Ind Crops Prod 60:247–258CrossRefGoogle Scholar
  76. Pavela R (2015) Essential oils for the development of eco-friendly mosquito larvicides: a review. Ind Crops Prod 76:174–187CrossRefGoogle Scholar
  77. Pavela R (2016a) History, presence and perspective of using plant extracts as commercial botanical insecticides and farm products for protection against insects: a review. Plant Prot Sci 52:229–241CrossRefGoogle Scholar
  78. Pavela R (2016b) Encapsulation: a convenient way to extend the persistence of the effect of eco-friendly mosquito larvicides. Curr Org Chem 20:2674–2680CrossRefGoogle Scholar
  79. Pavela R (2017) Extract from the roots of Saponaria officinalis as a potential acaricide against Tetranychus urticae. J Pest Sci 90:683–692CrossRefGoogle Scholar
  80. Pavela R (2018) Essential oils from Foeniculum vulgare Miller as a safe environmental insecticide against the aphid Myzus persicae Sulzer. Environ Sci Pollut Res 25:10904–10910CrossRefGoogle Scholar
  81. Pavela R, Benelli G (2016) Essential oils as eco-friendly biopesticides? Challenges and constraints. Trends Plant Sci 21:1000–1007CrossRefPubMedGoogle Scholar
  82. Pavela R, Govindarajan M (2017) The essential oil from Zanthoxylum monophyllum a potential mosquito larvicide with low toxicity to the non-target fish Gambusia affinis. J Pest Sci 90:369–378CrossRefGoogle Scholar
  83. Pavela R, Sedlák P (2018) Post-application temperature as a factor influencing the insecticidal activity of essential oil from Thymus vulgaris. Ind Crops Prod 113:46–49CrossRefGoogle Scholar
  84. Pavela R, Žabka M, Bednář J, Tříska J, Vrchotová N (2016) New knowledge for yield, composition and insecticidal activity of essential oils obtained from the aerial parts or seeds of fennel (Foeniculum vulgare Mill.). Ind Crops Prod 83:275–282CrossRefGoogle Scholar
  85. Pavela R, Benelli G, Pavoni L, Bonacucina G, Cespi M, Cianfaglione K, Bajalan I, Morshedloo MR, Lupidi G, Romano D, Canale A, Maggi F (2018) Microemulsions for delivery of Apiaceae essential oils—Towards highly effective and eco-friendly mosquito larvicides? Ind Crops Prod. CrossRefGoogle Scholar
  86. Petrakis EA, Kimbaris AC, Perdikis DC, Lykouressis DP, Tarantilis PA, Polissiou MG (2014) Responses of Myzus persicae (Sulzer) to three Lamiaceae essential oils obtained by microwave-assisted and conventional hydrodistillation. Ind Crops Prod 62:272–279CrossRefGoogle Scholar
  87. Pinheiro PF, de Queiroz VT, Rondelli VM, Costa AV, Marcelino TD, Pratissoli D (2013) Insecticidal activity of citronella grass essential oil on Frankliniella schultzei and Myzus persicae. Cienc Agrotech 37:138–144CrossRefGoogle Scholar
  88. Rodilla JM, Silva LA, Martinez N, Lorenzo D, Davyt D, Castillo L, Gimenez C, Cabrera R, Gonzalez-Coloma A, Zrostlikova J, Dellacassa E (2011) Advances in the identification and agrochemical importance of sesquiterpenoids from Bulnesia sarmientoi essential oil. Ind Crops Prod 33:497–503CrossRefGoogle Scholar
  89. Sampson BJ, Tabanca N, Kirimer N, Demirci B, Baser KHC, Khan IA, Spiers JM, Wedge DE (2005) Insecticidal activity of 23 essential oils and their major compounds against adult Lipaphis pseudobrassicae (Davis) (Aphididae: Homoptera). Pest Manag Sci 61:1122–1128CrossRefPubMedGoogle Scholar
  90. Smith GH, Roberts JM, Pope TW (2018) Terpene based biopesticides as potential alternatives to synthetic insecticides for control of aphid pests on protected ornamentals. Crop Prot 110:125–130CrossRefGoogle Scholar
  91. Tak J-H, Isman MB (2017) Penetration-enhancement underlies synergy of plant essential oil terpenoids as insecticides in the cabbage looper, Trichoplusia ni. Sci Rep 7:42432CrossRefPubMedPubMedCentralGoogle Scholar
  92. Tewary DK, Bhardwaj A, Shanker A (2005) Pesticidal activities in five medicinal plants collected from mid hills of western Himalayas. Ind Crops Prod 22:241–247CrossRefGoogle Scholar
  93. Tunc I, Şahinkaya Ş (1998) Sensitivity of two greenhouse pests to vapours of essential oils. Entomol Exp Appl 86:183–187CrossRefGoogle Scholar
  94. Wafa K, Khaoula Z, Salaheddine S, Chedi G, Wafa T, Asma L, Ikbal C (2013) Chemical composition of essential oils of fruits of three ripening stages ofbitter orangeand their insecticidal potential against the aphid (Myzus persicae). Microbiol Hyg Alim 25:107–111Google Scholar
  95. WHO (1996) Report of the WHO informal consultation on the evaluation and testing of insecticides CTD/WHOPES/IC/96.1Google Scholar
  96. Yang FL, Li XG, Zhu F, Lei CL (2009) Structural characterization of nanoparticles loaded with garlic essential oil and their insecticidal activity against Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae). J Agric Food Chem 57:10156–10162CrossRefPubMedGoogle Scholar
  97. Yang T, Stoopen G, Thoen M, Wiegers G, Jongsma MA (2013) Chrysanthemum expressing a linalool synthase gene ‘smells good’, but ‘tastes bad’ to western flower thrips. Plant Biotechnol J 11:875–882CrossRefPubMedGoogle Scholar
  98. Yang W, Zhao A, Congai Z, Qizhi L, Wangpeng S (2014) Composition of the essential oil of Cynanchum mongolicum (Asclepiadaceae) and insecticidal activities against Aphis glycines (Hemiptera: Aphidiae). Pharmacogn Mag 10:130–134CrossRefGoogle Scholar
  99. Yates AD, Miche A (2018) Mechanisms of aphid adaptation to host plant resistence. Curr Opin Insect Sci 26:41–49CrossRefPubMedGoogle Scholar
  100. Yazdgerdian AR, Akhtar Y, Isman MB (2015) Insecticidal effects of essential oils against woolly beech aphid, Phyllaphis fagi (Hemiptera: Aphididae) and rice weevil, Sitophilus oryzae (Coleoptera: Curculionidae). J Entomol Zool Stud 3:265–271Google Scholar
  101. Zapata N, Lognay G, Smagghe G (2010) Bioactivity of essential oils from leaves and bark of Laurelia sempervirens and Drimys winteri against Acyrthosiphon pisum. Pest Manag Sci 66:1324–1331CrossRefPubMedGoogle Scholar
  102. Zhang Q, Li Z, Chang CH, Lou JL, Zhao MR, Lu C (2018) Potential human exposures to neonicotinoid insecticides: a review. Environ Pollut 236:71–81CrossRefPubMedGoogle Scholar
  103. Żyła D, Homan A, Wegierek P (2017) Polyphyly of the extinct family Oviparosiphidae and its implications for inferring aphid evolution (Hemiptera, Sternorrhyncha). PLoS ONE 12:e0174791. CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Regional Research Center on Horticulture and Organic AgricultureChott MeriemTunisia
  2. 2.Crop Research InstitutePrague 6Czech Republic

Personalised recommendations