Advertisement

Global geographic distribution of Tuta absoluta as affected by climate change

  • P. A. SantanaJr.Email author
  • L. Kumar
  • R. S. Da Silva
  • M. C. Picanço
Original Paper

Abstract

Over the last 10 years, the insect Tuta absoluta has become one of the most important threats to agriculture worldwide. Since its introduction in Spain in 2006, this pest has infested 60% of the tomato crops in many regions of the world. Here we present the geographic distribution of T. absoluta at a global scale. Through the combination of spatial distribution models and the current distribution of the pest, this research makes projections of the threatened regions for this insect at the present and future times. We modelled the pest’s potential distribution based on its new thermal requirement and the stress factors which limit this pest in Brazil. The model presented here showed large suitable areas for the tomato pinworm in the North and Central Americas, Africa, Europe, Asia and Oceania for the current and future times. Important tomato producers such as China, Mexico and the USA should be concerned about the risk of an eventual invasion of T. absoluta due to their climatic suitability for this pest. The climate changes predicted will affect T. absoluta negatively around the equator and positively near the poles. Regions with high latitude, for example the USA and northern Europe, will become more suitable for the tomato pinworm due to the increase in temperature due to climate change. This study provides a comprehensive and current CLIMEX modelling effort for T. absoluta, allowing pest management agencies to increase their vigilance and improve quarantine measures.

Keywords

CLIMEX Ecosystem modelling Tomato pinworm Ecological niche model Invasive alien species 

Notes

Acknowledgements

This research was supported by the National Council for Scientific and Technological Development (Conselho Nacional de Desenvolvimento Científico e Tecnológico—CNPq), the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001, the Minas Gerais State Foundation for Research Aid (Fundação de Amparo à Pesquisa do Estado de Minas Gerais—FAPEMIG) and the School of Environmental and Rural Science of the University of New England (UNE), Armidale, Australia. The simulations were carried out using computational facilities at UNE.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

10340_2018_1057_MOESM1_ESM.docx (105 kb)
Supplementary material 1 (DOCX 104 kb)

References

  1. Bacci L (2006) Factors determining the attack of Tuta absoluta on tomato. Doctoral dissertation, Universidade Federal de ViçosaGoogle Scholar
  2. Barrientos RZ, Apablaza JH, Norero AS, Estay P (1998a) Temperatura base y constante térmica de desarrollo de la polilla del tomate, Tuta absoluta (Lepidoptera: Gelechiidae). Cienc Invest Agrar 25:133–137.  https://doi.org/10.7764/rcia.v25i3.659 CrossRefGoogle Scholar
  3. Barrientos ZR, Apablaza HJ, Norero SA, Estay PP (1998b) Threshold temperature and thermal constant for the development of the South american tomato moth, Tuta absoluta (Lepidoptera: Gelechiidae). Cienc Invest Agrar 25:133–137CrossRefGoogle Scholar
  4. Barry S, Elith J (2006) Error and uncertainty in habitat models. J Appl Ecol 43:413–423.  https://doi.org/10.1111/j.1365-2664.2006.01136.x CrossRefGoogle Scholar
  5. Begon M, Townsend CR, Harper JL (2005) Ecology: from individuals to ecosystems, 4th edn. Blackwell Publishing, MaldenGoogle Scholar
  6. Bentancourt CM, Scatoni IB, Rodríguez JJ (1996) Influencia de la temperatura sobre la reproduccion y el desarrollo de Scrobipalpuloides absoluta (Meyrick) (Lepidoptera: Gelechiidae). Rev Bras Biol 56:661–670Google Scholar
  7. Biondi A, Guedes RNC, Wan F-H, Desneux N (2018) Ecology, worldwide spread, and management of the invasive South American tomato pinworm, Tuta absoluta: past, present, and future. Annu Rev Entomol.  https://doi.org/10.1146/annurev-ento-031616-034933 CrossRefPubMedGoogle Scholar
  8. Brotons L, Thuiller W, Araújo MB, Hirzel AH (2004) Presence-absence versus presence-only modelling methods for predicting bird habitat suitability. Ecography 27:437–448.  https://doi.org/10.1111/j.0906-7590.2004.03764.x CrossRefGoogle Scholar
  9. Campos MR, Biondi A, Adiga A, Guedes RNC, Desneux N (2017) From the Western Palaearctic region to beyond: Tuta absoluta 10 years after invading Europe. J Pest Sci 90:787–796.  https://doi.org/10.1007/s10340-017-0867-7 CrossRefGoogle Scholar
  10. Cook DC, Fraser RW, Paini DR, Warden AC, Lonsdale WM, De Barro PJ (2011) Biosecurity and yield improvement technologies are strategic complements in the fight against food insecurity. PLoS ONE 6:e26084.  https://doi.org/10.1371/journal.pone.0026084 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Damos P, Savopoulou-Soultani M (2012) Temperature-driven models for insect development and vital thermal requirements. Psyche 2012:13.  https://doi.org/10.1155/2012/123405 CrossRefGoogle Scholar
  12. Desneux N et al (2010) Biological invasion of European tomato crops by Tuta absoluta: ecology, geographic expansion and prospects for biological control. J Pest Sci 83:197–215.  https://doi.org/10.1007/s10340-010-0321-6 CrossRefGoogle Scholar
  13. Desneux N, Luna MG, Guillemaud T, Urbaneja A (2011) The invasive South American tomato pinworm, Tuta absoluta, continues to spread in Afro-Eurasia and beyond: the new threat to tomato world production J. Pest Sci 84:403–408.  https://doi.org/10.1007/s10340-011-0398-6 CrossRefGoogle Scholar
  14. Dormann CF et al (2012) Correlation and process in species distribution models: bridging a dichotomy. J Biogeogr 39:2119–2131.  https://doi.org/10.1111/j.1365-2699.2011.02659.x CrossRefGoogle Scholar
  15. Essl F et al (2011) Socioeconomic legacy yields an invasion debt. Proc Natl Acad Sci 108:203–207.  https://doi.org/10.1073/pnas.1011728108 CrossRefPubMedGoogle Scholar
  16. FAO (2017) FAO statistical yearbook. Food and Agriculture Organization of the United Nations. http://www.fao.org/faostat/en/#data/QC/visualize. Accessed 08 Aug 2017
  17. Gontijo PC, Picanço MC, Pereira EJG, Martins JC, Chediak M, Guedes RNC (2013) Spatial and temporal variation in the control failure likelihood of the tomato leaf miner, Tuta absoluta. Ann Appl Biol 162:50–59.  https://doi.org/10.1111/aab.12000 CrossRefGoogle Scholar
  18. Guedes RNC, Picanço MC (2012) The tomato borer Tuta absoluta in South America: pest status, management and insecticide resistance. EPPO Bull 42:211–216.  https://doi.org/10.1111/epp.2557 CrossRefGoogle Scholar
  19. Guillemaud T et al (2015) The tomato borer, Tuta absoluta, invading the Mediterranean Basin, originates from a single introduction from Central Chile. Sci Rep 5:8371.  https://doi.org/10.1038/srep08371 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Guimapi RYA, Mohamed SA, Okeyo GO, Ndjomatchoua FT, Ekesi S, Tonnang HEZ (2016) Modeling the risk of invasion and spread of Tuta absoluta in Africa. Ecol Complex 28:77–93.  https://doi.org/10.1016/j.ecocom.2016.08.001 CrossRefGoogle Scholar
  21. Hance T, Baaren JV, Vernon P, Boivin G (2007) Impact of extreme temperatures on parasitoids in a climate change perspective. Annu Rev Entomol 52:107–126.  https://doi.org/10.1146/annurev.ento.52.110405.091333 CrossRefPubMedGoogle Scholar
  22. Jarnevich CS, Stohlgren TJ, Kumar S, Morisette JT, Holcombe TR (2015) Caveats for correlative species distribution modeling. Ecol Inform 29:6–15.  https://doi.org/10.1016/j.ecoinf.2015.06.007 CrossRefGoogle Scholar
  23. Kearney M, Porter W (2009) Mechanistic niche modelling: combining physiological and spatial data to predict species’ ranges. Ecol Lett 12:334–350.  https://doi.org/10.1111/j.1461-0248.2008.01277.x CrossRefGoogle Scholar
  24. Kolar CS, Lodge DM (2001) Progress in invasion biology: predicting invaders. Trends Ecol Evol 16:199–204.  https://doi.org/10.1016/S0169-5347(01)02101-2 CrossRefPubMedGoogle Scholar
  25. Kriticos DJ, Webber BL, Leriche A, Ota N, Macadam I, Bathols J, Scott JK (2012) CliMond: global high-resolution historical and future scenario climate surfaces for bioclimatic modelling. Methods Ecol Evol 3:53–64.  https://doi.org/10.1111/j.2041-210x.2011.00134.x CrossRefGoogle Scholar
  26. Kriticos DJ, Maywald G, Yonow T, Zurcher E, Herrmann N, Sutherst R (2015) CLIMEX version 4: exploring the effects of climate on plants, animals and diseases. CSIRO, Canberra, p 184Google Scholar
  27. Kumar S, Neven LG, Yee WL (2014) Evaluating correlative and mechanistic niche models for assessing the risk of pest establishment. Ecosphere 5:1–23.  https://doi.org/10.1890/ES14-00050.1 CrossRefGoogle Scholar
  28. Marcano R (1995) Efecto de la temperatura sobre el desarrollo y la reproduccion de Scrobipalpula absoluta (Meyrick) (Lepidoptera: Gelechiidae). Bol Entomol Venez 10:69–75Google Scholar
  29. Martins JC, Picanco MC, Bacci L, Guedes RNC, Santana PA Jr, Ferreira DO, Chediak M (2016) Life table determination of thermal requirements of the tomato borer Tuta absoluta J. Pest Sci 89:897–908.  https://doi.org/10.1007/s10340-016-0729-8 CrossRefGoogle Scholar
  30. Miranda MMM, Picanço M, Zanuncio JC, Guedes RNC (1998) Ecological life table of Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae). Biocontrol Sci Technol 8:597–606.  https://doi.org/10.1080/09583159830117 CrossRefGoogle Scholar
  31. Paini DR, Sheppard AW, Cook DC, De Barro PJ, Worner SP, Thomas MB (2016) Global threat to agriculture from invasive species. Proc Natl Acad Sci 113:7575–7579.  https://doi.org/10.1073/pnas.1602205113 CrossRefPubMedGoogle Scholar
  32. Pereira EJG, Picanço MC, Bacci L, Crespo ALB, Guedes RNC (2007) Seasonal mortality factors of the coffee leafminer, Leucoptera coffeella. Bull Entomol Res 97:421–432.  https://doi.org/10.1017/S0007485307005202 CrossRefPubMedGoogle Scholar
  33. Randin CF, Dirnböck T, Dullinger S, Zimmermann NE, Zappa M, Guisan A (2006) Are niche-based species distribution models transferable in space? J Biogeogr 33:1689–1703.  https://doi.org/10.1111/j.1365-2699.2006.01466.x CrossRefGoogle Scholar
  34. Sankarganesh E, Firake DM, Sharma B, Verma VK, Behere GT (2017) Invasion of the South American tomato pinworm, Tuta absoluta, in northeastern India: a new challenge and biosecurity concerns. Entomol Gen 36:335–345.  https://doi.org/10.1127/entomologia/2017/0489 CrossRefGoogle Scholar
  35. Shabani F, Kumar L (2013) Risk levels of invasive Fusarium oxysporum f. sp. in areas suitable for date palm (Phoenix dactylifera) cultivation under various climate change projections. PLoS ONE 8:e83404.  https://doi.org/10.1371/journal.pone.0083404 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Silva GA, Picanço MC, Bacci L, Crespo ALB, Rosado JF, Guedes RNC (2011) Control failure likelihood and spatial dependence of insecticide resistance in the tomato pinworm, Tuta absoluta. Pest Manag Sci 67:913–920.  https://doi.org/10.1002/ps.2131 CrossRefPubMedGoogle Scholar
  37. Silva RS, Kumar L, Shabani F, Picanço MC (2016) Assessing the impact of global warming on worldwide open field tomato cultivation through CSIRO-Mk3·0 global climate model. J Agric Sci 155:407–420.  https://doi.org/10.1017/s0021859616000654 CrossRefGoogle Scholar
  38. Silva RS, Kumar L, Shabani F, Picanço MC (2017) Potential risk levels of invasive Neoleucinodes elegantalis (small tomato borer) in areas optimal for open-field Solanum lycopersicum (tomato) cultivation in the present and under predicted climate change. Pest Manag Sci 73:616–627.  https://doi.org/10.1002/ps.4344 CrossRefPubMedGoogle Scholar
  39. Soberón J (2005) Interpretation of models of fundamental ecological niches and species’ distributional areas. Biodivers Inform 2:1–10CrossRefGoogle Scholar
  40. Sutherst RW, Maywald GF (1985) A computerised system for matching climates in ecology. Agric Ecosyst Environ 13:281–299.  https://doi.org/10.1016/0167-8809(85)90016-7 CrossRefGoogle Scholar
  41. Sutherst RW, Maywald GF, Kriticos DJ (2007) CLIMEX version 3: user’s guide. Hearne Scientific Software Pty Ltd., MelbourneGoogle Scholar
  42. Taylor S, Kumar L (2012) Sensitivity analysis of CLIMEX parameters in modelling potential distribution of Lantana camara L. PLoS ONE 7:e40969.  https://doi.org/10.1371/journal.pone.0040969 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Thomson LJ, Macfadyen S, Hoffmann AA (2010) Predicting the effects of climate change on natural enemies of agricultural pests. Biol Control 52:296–306.  https://doi.org/10.1016/j.biocontrol.2009.01.022 CrossRefGoogle Scholar
  44. Tonnang HEZ, Mohamed SF, Khamis F, Ekesi S (2015) Identification and risk assessment for worldwide invasion and spread of Tuta absoluta with a focus on Sub-Saharan Africa: Implications for phytosanitary measures and management. PLoS ONE 10:e0135283.  https://doi.org/10.1371/journal.pone.0135283 CrossRefPubMedPubMedCentralGoogle Scholar
  45. van Vuuren DP, Carter TR (2014) Climate and socio-economic scenarios for climate change research and assessment: reconciling the new with the old. Clim Change 122:415–429.  https://doi.org/10.1007/s10584-013-0974-2 CrossRefGoogle Scholar
  46. Xian X, Han P, Wang S, Zhang G, Liu W, Desneux N, Wan F (2017) The potential invasion risk and preventive measures against the tomato leafminer Tuta absoluta in China. Entomol Gen 36:319–333.  https://doi.org/10.1127/entomologia/2017/0504 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Departamento de FitotecniaUniversidade Federal de ViçosaViçosaBrazil
  2. 2.Ecosystem Management, School of Environmental and Rural ScienceUniversity of New EnglandArmidaleAustralia
  3. 3.Departamento de EntomologiaUniversidade Federal de ViçosaViçosaBrazil

Personalised recommendations