Advertisement

Variability in herbivore-induced defence signalling across different maize genotypes impacts significantly on natural enemy foraging behaviour

  • Mirian F. F. Michereff
  • Diego M. Magalhães
  • Marla J. Hassemer
  • Raúl A. Laumann
  • Jing-Jiang Zhou
  • Paulo E. de A. Ribeiro
  • Paulo A. Viana
  • Paulo E. de O. Guimarães
  • Pedro H. C. Schimmelpfeng
  • Miguel Borges
  • John A. Pickett
  • Michael A. Birkett
  • Maria Carolina Blassioli-Moraes
Original Paper
  • 129 Downloads

Abstract

‘Smart’ plants that release volatile defence compounds in response to pest damage, and which recruit beneficial natural enemies, offer an opportunity for exploiting biological control in future crop protection strategies. Using six maize genotypes, Zapalote Chico (‘landrace’), Mirt2A, Sintético Spodoptera (SS), L3, and two commercial hybrids BRS 4103 and BRS 1040, the aim of this work was to evaluate maize responses to larval damage from the fall armyworm Spodoptera frugiperda, a major maize pest in Brazil, and the ability of the egg parasitoid Telenomus remus to respond to HIPVs induced by S. frugiperda damage. Y-tube olfactometer bioassays with T. remus showed preferential responses to the S. frugiperda-induced volatiles of SS and BRS 4103 compared to constitutive volatiles of the same genotypes, but to none of the other genotypes tested. Chemical analysis of maize volatile extracts showed that SS produced more volatile compounds in response to S. frugiperda damage, followed by BRS 4103. In addition, higher levels of mono, homo-, or sesquiterpenes, together with green leaf volatiles (GLVs) were the most attractive blend for T. remus; however, there was no attraction when only GLVs were produced in higher levels. In summary, these results show that volatile defence signalling produced by maize plants due to S. frugiperda damage varies significantly depending on maize genotype and this variability influences T. remus foraging behaviour.

Keywords

Induced compounds Indirect defence Searching behaviour 

Notes

Acknowledgements

We thank Isabela Grisi, Sulian Gomes de Azevedo and Helio Moreira dos Santos for helping with laboratory rearing of the insects; Dr. Ivan Cruz for providing the egg parasitoid T. remus to establish our colony and the Post-Graduate Zoology Program of the University of Brasília (UnB) for use of their facility.

Funding

This work received financial support from the Coordination of Superior Level Staff Improving (CAPES) through a grant to MJH (88881.1317661/2014-01), the National Counsel of Technological and Scientific Development (CNPq), the Federal District Research Foundation (FAP-DF), and the Brazilian Corporation of Agricultural Research (EMBRAPA). The work at Rothamsted forms part of the Smart Crop Protection (SCP) strategic programme (BBS/OS/CP/000001) funded through Biotechnology and Biological Sciences Research Council’s Industrial Strategy Challenge Fund.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

10340_2018_1033_MOESM1_ESM.docx (21 kb)
Supplementary material 1 (DOCX 20 kb)
10340_2018_1033_MOESM2_ESM.docx (21 kb)
Supplementary material 2 (DOCX 20 kb)
10340_2018_1033_MOESM3_ESM.docx (38 kb)
Supplementary material 3 (DOCX 38 kb)
10340_2018_1033_MOESM4_ESM.docx (28 kb)
Supplementary material 4 (DOCX 28 kb)
10340_2018_1033_MOESM5_ESM.jpg (221 kb)
Supplementary material 5 (JPEG 220 kb)
10340_2018_1033_MOESM6_ESM.docx (13 kb)
Supplementary material 6 (DOCX 12 kb)

References

  1. Allmann S, Baldwin IT (2010) Insects betray themselves in nature to predators by rapid isomerization of green leaf volatiles. Science 329:1075–1078CrossRefPubMedGoogle Scholar
  2. Bernardi D, Salmeron E, Horikoshi RJ, Bernardi O, Dourado PM, Carvalho RA et al (2015) Cross-resistance between Cry1 proteins in fall armyworm (Spodoptera frugiperda) may affect the durability of current pyramided Bt maize hybrids in Brazil. PLoS ONE 10:e0140130.  https://doi.org/10.1371/journal.pone.0140130 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bruce TJ, Pickett JA (2011) Perception of plant volatile blends by herbivorous insects—finding the right mix. Phytochemistry 72:1605–1611CrossRefPubMedGoogle Scholar
  4. Bruce TJA, Midega CAO, Birkett MA, Pickett JA, Khan ZR (2010) Is quality more important than quantity? Insect behavioural responses to changes in a volatile blend after stemborer oviposition on an African grass. Biol Lett 6:314–317CrossRefPubMedGoogle Scholar
  5. Büchel K, Malskies S, Mayer M, Fenning TM, Gershenzon J et al (2011) How plants give early herbivore alert: volatile terpenoids attract parasitoids to egg-infested elms. Basic Appl Ecol 12:403–412CrossRefGoogle Scholar
  6. Bueno RCOF, Carneiro TR, Bueno AF, Pratissoli D, Fernandes OA, Vieira SS (2010) Parasitism capacity of Telenomus remus Nixon (Hymenoptera: Scelionidae) on Spodoptera frugiperda (Smith) (Lepidoptera: Noctuidae) eggs. Braz Arch Biol Technol 53:133–139CrossRefGoogle Scholar
  7. Carneiro TR, Fernandes OA, Cruz I, Bueno RCO (2010) Functional response of Telenomus remus Nixon (Hymenoptera: Scelionidae) to Spodoptera frugiperda (JE Smith) (Lepidoptera: Noctuidae) eggs: effect of female age. Rev Bras Entomol 54:692–696CrossRefGoogle Scholar
  8. Cave RD (2000) Biology, ecology and use in pest management of Telenomus remus. Biocontrol News Inf (Dordr) 21:21–26Google Scholar
  9. Chiappini E, Salerno G, Berzolla A, Iacavone A, Reguzzi MC, Conti E (2012) Role of volatile Semiochemicals in host location by the egg parasitoid Anagrus breviphragma. Entomol Exp Appl 144:311–316CrossRefGoogle Scholar
  10. Colazza S, McElfresh JS, Millar JG (2004) Identification of volatile synomones, induced by Nezara viridula feeding and oviposition on bean spp., that attract the egg parasitoid Trissolcus basalis. J Chem Ecol 30:945–964CrossRefPubMedGoogle Scholar
  11. CONAB (2017) Companhia Nacional de Abastecimento. Acompanhamento de safra brasileira: grãos, V4 safra 2016/2017. Décimo segundo levantamento, setembro 2017. Brasília-DF: Conab. http://www.conab.gov.br/OlalaCMS/uploads/arquivos/17_09_12_10_14_36_boletim_graos_setembro_2017.pdf
  12. Costa LP, Sena MR, Guimarães PEO de, Viana PA, Pacheco CAP (2006) Avaliação de linhagens de milho para resistência à lagarta-do-cartucho, Spodoptera frugiperda (J. E. Smith). In: 26° Congresso Nacional de Milho e Sorgo, Belo Horizonte, 2006. Available in: https://www.embrapa.br/busca-de-publicacoes/-/publicacao/490124/avaliacao-de-linhagens-de-milho-para-resistencia-a-lagarta-do-cartucho-spodoptera-frugiperda-j-e-smith. Accessed 26 Feb 2018
  13. Cruz I (1995) A lagarta-do-cartucho na cultura do milho. Circular Técnica/Embrapa Milho e Sorgo 21:45pGoogle Scholar
  14. Cruz I, Figueiredo MLC, Silva RB (2010) Monitoramento de adultos de Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae) e Diatraea saccharalis (Fabricius) (Lepidoptera: Pyralidae) em algumas regiões produtoras de milho no Brasil. Documentos/Embrapa Milho e Sorgo 93:42Google Scholar
  15. Cruz I, Figueiredo MLC, Silva RB, Silva IF, Paula CS, Foster JE (2012) Using sex pheromone traps in the decision-making process for pesticide application against fall armyworm (Spodoptera frugiperda [Smith] [Lepidoptera: Noctuidae]) larvae in maize. Int J Pest Manag 58:83–90CrossRefGoogle Scholar
  16. D’Alessandro M, Turlings TCJ (2005) In situ modification of herbivore-induced plant odors: A novel approach to study the attractiveness of volatile organic compounds to parasitic wasps. Chem Senses 30:739–753CrossRefPubMedGoogle Scholar
  17. D’Alessandro M, Held M, Triponez Y, Turlings TCJ (2006) The role of indole and other shikimic acid derived maize volatiles in the attraction of two parasitic wasps. J Chem Ecol 32:2733–2748CrossRefPubMedGoogle Scholar
  18. de Lange ES, Farnier K, Gaudillat B, Turlings TCJ (2016) Comparing the attraction of two parasitoids to herbivore-induced volatiles of maize and its wild ancestors, the teosintes. Chemoecology 26:33–44CrossRefGoogle Scholar
  19. Degen T, Dillmann C, Marion-Poll F, Turlings TCJ (2004) High genetic variability of herbivore-induced volatile emission within a broad range of maize inbred lines. Plant Physiol 135:1928–1938.  https://doi.org/10.1104/pp.104.039891 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Degen T, Bakalovic N, Bergvinson D, Turlings TCJ (2012) Differential performance and parasitism of caterpillars on maize inbred lines with distinctly different herbivore-induced volatile emissions. PLoS ONE 7:1–14CrossRefGoogle Scholar
  21. Erb M, Veyrat N, Robert CAM, Xu H, Frey M, Ton J, Turlings TCJ (2015) Indole is an essential herbivore-induced volatile priming signal in maize. Nat Commun 6:1–10.  https://doi.org/10.1038/ncomms7273 CrossRefGoogle Scholar
  22. Farias JR, Andow DA, Horikoshi RJ, Sorgatto RJ, Fresia P, Santos AC, Omoto C (2014) Field-evolved resistance to Cry1F maize by Spodoptera frugiperda (Lepidoptera: Noctuidae) in Brazil. Crop Prot 64:150–158CrossRefGoogle Scholar
  23. Figueiredo MLC, Cruz I, Della Lucia TMC (1999) Controle integrado de Spodoptera frugiperda (Smith & Abbott) utilizando-se o parasitoide Telenomus remus Nixon. Pesq Agropec Bras 34:1975–1982CrossRefGoogle Scholar
  24. Figueiredo MLC, Della Lucia TMC, Cruz I (2002) Effect of Telenomus remus Nixon (Hymenoptera: Scelionidae) on control of Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae) egg masses upon release in a maize field. Rev Bras Milho e Sorgo 1:12–19CrossRefGoogle Scholar
  25. Figueiredo MLC, Martins-Dias AMP, Cruz I (2006) Relação entre a lagarta do cartucho e seus agentes de controle biológico natural na produção do milho. Pesq Agrop Bras 41:1693–1698CrossRefGoogle Scholar
  26. Galvão JCC, Miranda GV, Trogello E, Fritsche-Neto R (2014) Sete décadas de evolução do sistema produtivo da cultura do milho. Rev Ceres 61:819–828CrossRefGoogle Scholar
  27. Gazit Y, Lewis WJ, Tumlinson JH (1996) Arrestment of Telenomus remus by a kairomone associated with eggs of its host Spodoptera frugiperda. Biol Control 6:283–290CrossRefGoogle Scholar
  28. Gouinguené S, Degen T, Turlings TCJ (2001) Variability in herbivore-induced odours emissions among maize cultivars and their wild ancestors (teosinte). Chemoecol 11:9–16CrossRefGoogle Scholar
  29. Heil M (2004) Induction of two indirect defences benefits lima bean (Phaseolus lunatus, Fabaceae) in nature. J Ecol 92:527–536CrossRefGoogle Scholar
  30. Hilker M, Fatouros NE (2015) Plant responses to insect egg deposition. Ann Rev Entomol 60:26.1–26.23CrossRefGoogle Scholar
  31. Hilker M, McNeil J (2008) Chemical and behavioural ecology in insect parasitoids: how to behave optimally in complex odorous environment. In: Wajnber E, Bernstein C, van Alphen J (eds) Behavioral ecology of insect parasitoids: from theoretical approaches to field applications, 1st edn. Blackwell Publishing, Oxford, pp 92–128CrossRefGoogle Scholar
  32. Hilker M, Meiners T (2006) Early herbivore alert: insect eggs induce plant defense. J Chem Ecol 32:1379–1397CrossRefPubMedGoogle Scholar
  33. Joshi BG, Sitaramaiah S, Ramaprasad G (1982) Field observations on impact of egg parasite Telenomus remus (Hym:Scelionidae) on tobacco caterpillar, Spodoptera litura (Lep.: Noctuidae) in tobacco nurseries in Andhra Pradesh, India. Entomophaga 27:331–334CrossRefGoogle Scholar
  34. Khan ZR, Midega CAO, Pittchar JO, Murage AW, Birkett MA, Bruce TJA, Pickett JA (2014) Achieving food security for one million sub-Saharan African poor through push–pull innovation by 2020. Philos Trans R Soc B 369:1–10CrossRefGoogle Scholar
  35. Leopold EJ (1990) Selective hydroboration of a 1,3,7-triene homogeraniol. Org Synt 64:164–171Google Scholar
  36. Lewis WJ, Nordlund DA (1984) Semiochemicals influencing fall armyworm parasitoid behaviour: implications for behavioural manipulation. Flor Entomol 67:343–349CrossRefGoogle Scholar
  37. Magalhães DM, Borges M, Laumann RA, Woodcock CM, Pickett JA, Birkett MA, Blassioli-Moraes MC (2016) Influence of two acylic homoterpenes (Tetranorterpenes) on the foraging behaviour of Anthonomus grandis Boh. J Chem Ecol 42:305–313CrossRefPubMedGoogle Scholar
  38. McCormick AC, Gershenzon J, Unsicker SB (2014) Little peaks with big effects: establishing the role of minor plant volatiles in plant-insect interactions. Plant Cell Environ 37:1836–1844CrossRefGoogle Scholar
  39. Michereff MFF, Laumann RA, Borges M, Michereff Filho M, Diniz IR, Farias Neto AL, Moraes MCB (2011) Volatiles mediating plant-herbivory-natural enemy interaction in resistant and susceptible soybean cultivars. J Chem Ecol 37:273–285CrossRefPubMedGoogle Scholar
  40. Michereff MFF, Borges M, Laumann RA, Diniz IR, Moraes MCB (2013) Influence of volatile compounds from herbivore-damaged soybean plants on searching behavior of the egg parasitoid Telenomus podisi. Entomol Exp Appl 147:9–17CrossRefGoogle Scholar
  41. Michereff MFF, Borges M, Aquino MFS, Laumann RA, Gomes ACMM, Blassioli-Moraes MC (2016) The influence of volatile semiochemicals from stink bug eggs and oviposition-damaged plants on the foraging behaviour of the egg parasitoid Telenomus podisi. Bul Entomol Res 1:1–9Google Scholar
  42. Midega CAO, Pittchar JO, Pickett JA, Hailu GW, Khan ZR (2018) A climate-adapted push-pull system effectively controls fall armyworm, Spodoptera frugiperda (J E Smith), in maize in East Africa. Crop Prot 105:10–15CrossRefGoogle Scholar
  43. Moraes MCB, Pareja M, Laumann RA, Hoffmann-Campo CB, Borges M (2008) Response of the parasitoid Telenomus podisi to induced volatiles from soybean damaged by stink bug herbivory and oviposition. J Plant Interac 3:1742–1756CrossRefGoogle Scholar
  44. Mumm R, Hilker M (2005) The significance of background odour for an egg parasitoid to detect plants with host eggs. Chem Senses 30:337–343CrossRefPubMedGoogle Scholar
  45. Mumm R, Schrank K, Wegener R, Schulz S, Hilker M (2003) Chemical analysis of volatiles emitted by Pinus sylvestris after induction by insect oviposition. J Chem Ecol 29:1235–1252CrossRefPubMedGoogle Scholar
  46. Nordlund DA, Lewis WJ, Gueldner RC (1983) Kairomones and their use for management of entomophagus insects. Response of Telenomus remus to abdominal tips of Spodoptera frugiperda. J Chem Ecol 9:695–701CrossRefPubMedGoogle Scholar
  47. Peñaflor MFGV, Erb M, Miranda LA, Werneburg AG, Bento JMS (2011a) Herbivore-induced plant volatiles can serve as host location cues for a generalist and a specialist egg parasitoid. J Chem Ecol 37:1304–1313CrossRefPubMedGoogle Scholar
  48. Peñaflor MFGV, Erb M, Robert CAM, Miranda LA, Werneburg AG, Dossi FCA, Turlings TCJ, Bento JMS (2011b) Oviposition by a moth suppress constitutive and herbivore-induced plant volatiles in maize. Planta 234:207–215CrossRefPubMedGoogle Scholar
  49. Pickett JA, Khan ZR (2016) Plant volatile-mediated signalling and its application in agriculture: successes and challenges. New Phytol 212:856–870CrossRefPubMedGoogle Scholar
  50. Pickett JA, Woodcock CM, Midega CAO, Khan ZR (2014) Push–pull farming systems. Cur Opin Biotech 26:125–132CrossRefGoogle Scholar
  51. Pomari AF, Bueno AF, Bueno RCOF, Menezes AO Jr, Fonseca ACPF (2013) Releasing number of Telenomus remus (Nixon) (Hymenoptera: Platygastridae) against Spodoptera frugiperda Smith (Lepidoptera: Noctuidae) in corn, cotton and soybean. Ciência Rural 43:377–382CrossRefGoogle Scholar
  52. R Development Core Team (2009) R: A language and environment for statistical computing. Vienna: R foundation for statistical computing.Google Scholar
  53. Ranum P, Peña-Rosas JP, Garcia-Casal MN (2014) Global maize production, utilization, and consumption. Ann NY Acad Sci 1312:105–112CrossRefPubMedGoogle Scholar
  54. Schmidt FGV, Monnerat R, Borges M, Carvalho R (2001) Criação de insetos para avaliação de agentes entomopatogênicos e semioquímicos. Circular Técnica - Embrapa Recursos Genéticos e Biotecnologia 21:20Google Scholar
  55. Schröder R, Hilker M (2008) The relevance of background odor in resource location by insects: a behavioral approach. Bioscience 58:308–316CrossRefGoogle Scholar
  56. Silveira LCP, Vendramim JD, Rossetto CJ (1997) Efeito de genótipos de milho no desenvolvimento de Spodoptera frugiperda (J.E. Smith). An Soc Entomol Bras 26:291–298CrossRefGoogle Scholar
  57. Simpson M, Gurr GM, Simmons AT, Wratten SD, James DG, Leeson G, Nicol HI, Orre Gordon GUS (2011) Insect attraction to synthetic herbivore-induced plant volatile-treated field crops. Agric For Entomol 13:45–57CrossRefGoogle Scholar
  58. Steidle JLM, van Loon JJA (2003) Dietary specialization and infochemical use in carnivorous arthropods: testing a concept. Entomol Exp Appl 108:133–148CrossRefGoogle Scholar
  59. Tamiru A, Bruce TJA, Woodcock CM, Caulfield JC, Midega CAO, Ogol CKPO et al (2011) Maize landraces recruit egg and larval parasitoids in response to egg deposition by a herbivore. Ecol Lett 14:1075–1083CrossRefPubMedGoogle Scholar
  60. Toscano LC, Calado Filho GC, Cardoso AM, Maruyama WI, Tomquelski GV (2012) Impact of insecticides on Spodoptera frugiperda (Lepidoptera, Noctuidae) and its natural enemies on off-season maize in Cassilândia and Chapadão do Sul, State of Mato Grosso do Sul, Brazil. Arqu Inst Biol 79:223–231CrossRefGoogle Scholar
  61. Turlings TCJ, Erb M (2018) Tritrophic interactions mediated by herbivore induced plant volatiles: mechanisms, ecological, relevance, and application potential. Annu Rev Entomol 61:431–452Google Scholar
  62. Turlings TCJ, Bernasconi M, Bertossa R, Bigler F, Caloz G, Dorn S (1998) The induction of volatile emissions in maize by three herbivore species with different feedings habits: possible consequences for their natural enemies. Biol Cont 11:122–129CrossRefGoogle Scholar
  63. van Lenteren JC, Bueno VHP (2003) Augmentative biological control of arthropods in Latin America. Bio Control 48:123–139Google Scholar
  64. Vet LEM, Dicke M (1992) Ecology of infochemical use by natural enemies in a tritrophic context. Ann Rev Entomol 37:141–172CrossRefGoogle Scholar
  65. Viana PA, Potenza MR (2000) Avaliação de antibiose e não-preferência em cultivares de milho selecionados com resistência à lagarta- do-cartucho. Bragantia 59:27–33CrossRefGoogle Scholar
  66. Vieira CR, Blassioli-Moraes MC, Borges M, Pires CSS, Sujii ES, Laumann RA (2014) Field evaluation of (E)-2-hexenal efficacy for behavioral manipulation of egg parasitoids in soybean. Biocontrol 59:525–537CrossRefGoogle Scholar
  67. von Mérey G, Veyrat N, Mahuku G, Valdez RL, Turlings TCJ, D´Alessandro M (2011) Dispensing synthetic green leaf volatiles in maize fields increases the release sesquiterpene by the plants, but has little effect on the attraction of pest and beneficial insects. Phytochemistry 72:1838–1847CrossRefGoogle Scholar
  68. Wajnberg E (2006) Time allocation strategies in insect parasitoids: from ultimate to proximate behavioural mechanisms. Behav Ecol Sociobiol 60:589–611CrossRefGoogle Scholar
  69. Wäschke N, Meiners T, Rostás M (2013) Foraging strategies of parasitoids in complex chemical environments. In: Wajnberg E, Stefano C (eds) Chemical ecology of insect parasitoids, 1st edn. Wiley-Blackwell, UK, pp 37–63CrossRefGoogle Scholar
  70. Wojcik B, Whitcomb WH, Habeck DH (1976) Host range testing of Telenomus remus (Hymenoptera: Scelionidae). Fla Entomol 59:195–198CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Mirian F. F. Michereff
    • 1
  • Diego M. Magalhães
    • 1
  • Marla J. Hassemer
    • 1
    • 2
  • Raúl A. Laumann
    • 1
  • Jing-Jiang Zhou
    • 3
  • Paulo E. de A. Ribeiro
    • 4
  • Paulo A. Viana
    • 4
  • Paulo E. de O. Guimarães
    • 4
  • Pedro H. C. Schimmelpfeng
    • 1
  • Miguel Borges
    • 1
  • John A. Pickett
    • 5
  • Michael A. Birkett
    • 3
  • Maria Carolina Blassioli-Moraes
    • 1
  1. 1.Semiochemicals LaboratoryEmbrapa Genetic Resources and BiotechnologyBrasíliaBrazil
  2. 2.Department of Zoology, Institute of Biological SciencesUniversity of BrasíliaBrasíliaBrazil
  3. 3.Rothamsted ResearchHarpendenUK
  4. 4.Entomology LaboratoryEmbrapa Maize and SorghumSete LagoasBrazil
  5. 5.School of ChemistryCardiff UniversityCardiffUK

Personalised recommendations