Advertisement

Journal of Pest Science

, Volume 92, Issue 2, pp 715–722 | Cite as

Life history and functional response to prey density of the flower bug Orius sauteri attacking the fungivorous sciarid fly Lycoriella pleuroti

  • Shou-xian Wang
  • Ning Di
  • Xu Chen
  • Fan Zhang
  • Antonio Biondi
  • Nicolas Desneux
  • Su WangEmail author
Original Paper
  • 244 Downloads

Abstract

Seldom have natural enemies been quantified in their ability to control fungivorous arthropods, despite the severe losses they can cause in production of edible fungus. Here, we evaluated the omnivorous predator Orius sauteri (Poppius) when preying on eggs and larvae of the fungivorous sciarid fly Lycoriella pleuroti (Yang et Zhang) and compared against a microencapsulated artificial diet. We also estimated the predation ability of O. sauteri feeding on different densities of L. pleuroti larvae and eggs. The results indicated that O. sauteri successfully oviposit on a mushroom substrate. Moreover, both L. pleuroti eggs and larvae were capable of supporting O. sauteri populations. A type II functional response was observed for both males and females of the predator. Further, moderate values for parameter a′ (instantaneous attack rate) and greatly reduced Th (handling time) revealed a high potential for O. sauteri in suppressing outbreaks of L. pleuroti. This is the first report of a generalist predator feeding and developing within an edible mushroom-pest system. O. sauteri is a prime candidate for testing as a biological control agent, either in inoculative or in inundative release, for targeted suppression of the fungivorous sciarid L. pleuroti.

Keywords

Biological control Development Predator Oyster mushroom Anthocoridae 

Notes

Acknowledgements

The authors thank the staff in the mushroom farm in Yongledian town for kindly supplying the pest materials. We also thank all colleagues who helped in maintaining the colony of the natural enemy and Dr. Douglas Chester who reviewed the manuscript and gave advice.

Funding

National Key Research and Development Program of China (2017YFD0201000, 2018YFD02004); Beijing Science and Technology Program (D171100001617003); Youth Scientific Research Fund of Beijing Academy of Agricultural and Forestry Sciences (QNJJ201725); Youth Science Foundation, Beijing Academy of Agriculture and Forestry Sciences (No. qnjj201410); International Joint Fund Program of BAAFS (GJHZ2016); Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China (BZ0432).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Biondi A, Desneux N, Amiens-Desneux E, Siscaro G, Zappalà L (2013) Biology and developmental strategies of the Palaearctic parasitoid Bracon nigricans (Hymenoptera: Braconidae) on the neotropical moth Tuta absoluta (Lepidoptera: Gelechiidae). J Econ Entomol 106:1638–1647CrossRefGoogle Scholar
  2. Biondi A, Zappalà L, Di Mauro A, Tropea Garzia G, Russo A, Desneux N, Siscaro G (2016) Can alternative host plant and prey affect phytophagy and biological control by the zoophytophagous mirid Nesidiocoris tenuis? Biocontrol 61:79–90CrossRefGoogle Scholar
  3. Chang ST, Miles PG (2003) Mushrooms: cultivation of grey oyster mushroom with some added supplementary materials. Bioresour Technol 89:95–97CrossRefGoogle Scholar
  4. Coll M, Ridgway RL (1995) Functional and numerical responses of Orius insidiosus (Heteroptera: Anthocoridae) to its prey in different vegetable crops. Ann Entomol Soc Am 88:732–738CrossRefGoogle Scholar
  5. Desneux N, O’Neil RJ (2008) Potential of an alternative prey to disrupt predation of the generalist predator, Orius insidiosus, on the pest aphid, Aphis glycines, via short-term indirect interactions. Bull Entomol Res 98:631–639CrossRefGoogle Scholar
  6. Desneux N, O’Neil RJ, Yoo HJS (2006) Suppression of population growth of the soybean aphid, Aphis glycines Matsumura, by predators: the identification of a key predator, and the effects of prey dispersion, predator density and temperature. Environ Entomol 35:1342–1349CrossRefGoogle Scholar
  7. Desneux N, Decourtye A, Delpuech JM (2007) The sublethal effects of pesticides on beneficial arthropods. Annu Rev Entomol 52:81–106CrossRefGoogle Scholar
  8. Dundar A, Acay H, Yildiz A (2009) Effect of using different lignocellulosic wastes for cultivation of Pleurotus ostreatus (Jacq.) P. Kumm. on mushroom yield, chemical composition and nutritional value. Afr J Biotechnol 8:662–666Google Scholar
  9. Fathi SAA, Nouri-Ganbalani G (2010) Assessing the potential for biological control of potato field pests in Ardabil, Iran: functional responses of Orius niger (Wolf.) and O. minutus (L.) (Hemiptera: Anthocoridae). J Pest Sci 83:47–52CrossRefGoogle Scholar
  10. Ganjisaffar F, Perring TM (2015) Prey stage preference and functional response of the predatory mite Galendromus flumenis to Oligonychus pratensis. Biol Control 82:40–45CrossRefGoogle Scholar
  11. Gholami Moghaddam S, Hosseini M, Modarres Awal M, Allahyari H (2012) Effect of leaf surface characteristics of wheat cultivars on functional response of Orius albidipennis (Reuter) to barely aphid Sipha maydis (Passerini). Biol Control Pest Plant Dis 2:73–85Google Scholar
  12. Grewal PS (2000) Mushroom pests. Field manual of techniques in invertebrate pathology. Springer, DordrechtGoogle Scholar
  13. Harris MA, Gardner WA, Oetting RD (1996) A review of the scientific literature on fungus gnats (Diptera: Sciaridae) in the genus Bradysia. J Entomol Sci 31:252–276CrossRefGoogle Scholar
  14. Holling CS (1959) Some characteristics of simple types of predation and parasitism. Can Entomol 91:385–398CrossRefGoogle Scholar
  15. Jandricic SE (2005) The compatibility of Atheta coriaria (Kraatz) with greenhouse floriculture IPM programs for fungus gnat control. University of Guelph, GuelphGoogle Scholar
  16. Jaworski CC, Bompard A, Genies L, Amiens-Desneux E, Desneux N (2013) Preference and prey switching in a generalist predator attacking local and invasive alien pests. PLoS ONE 8(12):e82231CrossRefGoogle Scholar
  17. Jess S (2010) Integrated control of insect pests in commercial mushroom production. Lambert Academic Publishing, Saarbrücken, pp 1–254Google Scholar
  18. Jess S, Kirbas JM, Gordon AW, Murchie AK (2017) Potential for use of garlic oil to control Lycoriella ingenua (Diptera: Sciaridae) and Megaselia halterata (Diptera: Phoridae) in commercial mushroom production. Crop Prot 102:1–9CrossRefGoogle Scholar
  19. Lu YH, Wu KM, Jiang YY, Guo YY, Desneux N (2012) Widespread adoption of Bt cotton and insecticide decrease promotes biocontrol services. Nature 487:362–365CrossRefGoogle Scholar
  20. Lundgren JG, Wyckhuys KAG, Desneux N (2009) Population responses by Orius insidiosus to vegetational diversity. Biocontrol 54:135–142CrossRefGoogle Scholar
  21. Madadi H, Parizi EM, Allahyari H, Enkegaard A (2011) Assessment of the biological control capability of Hippodamia variegata (Col.: Coccinellidae) using functional response experiments. J Pest Sci 84:447–455CrossRefGoogle Scholar
  22. Mohammed AAH, Desneux N, Fan YJ, Han P, Ali A, Song DL, Gao XW (2018) Impact of imidacloprid and natural enemies on cereal aphids: Integration or ecosystem service disruption? Entomolo Gen 37:47–61CrossRefGoogle Scholar
  23. Nagai K, Yano E (1999) Effects of temperature on the development and reproduction of Orius sauteri (Poppius) (Heteroptera: Anthocoridae), a predator of Thrips palmi Karny (Thysanoptera: Thripidae). Appl Entomol Zool 34:223–229CrossRefGoogle Scholar
  24. Nagai K, Yano E (2000) Predation by Orius sauteri (Poppius) (Heteroptera: Anthocoridae) on Thrips palmi Karny (Thysanoptera: Thripidae). Functional response and selective predation. Appl Entomol Zool 35:565–574CrossRefGoogle Scholar
  25. Parolin P, Bresch C, Poncet C, Desneux N (2012) Functional characteristics of secondary plants for increased pest management. Int J Pest Manag 58:369–377CrossRefGoogle Scholar
  26. Rizki M, Tamai Y (2011) Effects of different nitrogen rich substrates and their combination to the yield performance of oyster mushroom (Pleurotus ostreatus). World J Microbiol Biotechnol 27:1695–1702CrossRefGoogle Scholar
  27. Salehi Z, Yarahmadi F, Rasekh A, Sohani NZ (2016) Functional responses of Orius albidipennis Reuter (Hemiptera, Anthocoridae) to Tuta absoluta Meyrick (Lepidoptera, Gelechiidae) on two tomato cultivars with different leaf morphological characteristics. Entomol Gen 36:127–136CrossRefGoogle Scholar
  28. Shamshad A (2010) The development of integrated pest management for the control of mushroom sciarid flies, Lycoriella ingenua (Dufour) and Bradysia ocellaris (Comstock), in cultivated mushrooms. Pest Manag Sci 66:1063–1074CrossRefGoogle Scholar
  29. Shi DR, Zhang HR, Li ZY, Hu SY, Zhang T (2009) Taxonomy and dominance analysis of sciarid fly species (Diptera: Sciaridae) on edible fungi in Yunnan. Acta Entomol Sin 52:934–940Google Scholar
  30. Smith JE (2002) Dimilin resistance in mushroom sciarids. Mushroom J 656:15–19Google Scholar
  31. Tan XL, Wang S, Zhang F (2013) Optimization an optimal artificial diet for the predatory bug Orius sauteri (Hemiptera: Anthocoridae). PLoS ONE 8:e61129CrossRefGoogle Scholar
  32. Tan XL, Wang S, Liu TX (2014) Acceptance and suitability of four plant substrates for rearing Orius sauteri (Hemiptera: Anthocoridae). Biocontrol Sci Technol 24:291–302CrossRefGoogle Scholar
  33. Tan XL, Zhao J, Wang S, Zhang F (2015) Optimization and evaluation of microencapsulated artificial diet for mass rearing the predatory ladybird Propylea japonica (Coleoptera: Coccinellidae). Insect Sci 22:111–120CrossRefGoogle Scholar
  34. Wang X, Lei C, Jiang Y, Niu C, Deng J, Li T, Song C (1998) Studies on the functional response of a predator Orius similis to its prey. Natl Enemies Insects 21:117–120Google Scholar
  35. Wang B, Zhang Z, Ma D, Liu S (2003) Effect of mushroom house conditioning on growth and development of Lycoriella pleuroti. Edible Fungi China 23:52–53Google Scholar
  36. Wang HL, Qin XF, Hao YU, Wang GC (2013a) Predation of Orius sauteri on MEAM1 Bemisia tabaci Pseudopupae. J Ecol Rural Environ 29:132–135Google Scholar
  37. Wang S, Tan X, Michaud J, Zhang F, Guo X (2013b) Light intensity and wavelength influence development, reproduction and locomotor activity in the predatory flower bug Orius sauteri (Poppius) (Hemiptera: Anthocoridae). Biocontrol 58:667–674CrossRefGoogle Scholar
  38. Wang S, Michaud J, Tan XL, Zhang F (2014) Comparative suitability of aphids, thrips and mites as prey for the flower bug Orius sauteri (Hemiptera: Anthocoridae). Eur J Entomol 111:221–226CrossRefGoogle Scholar
  39. Wang S, Xu F, Li Z, Zhao S, Song S, Rong C, Geng X, Liu Y (2015) The spent mushroom substrates of Hypsizigus marmoreus can be an effective component for growing the oyster mushroom Pleurotus ostreatus. Sci Hortic 186:217–222CrossRefGoogle Scholar
  40. Wen ZQ, Bian G, Hong LW (2010) Screening and optimization of the culture conditions of Bacillus thuringiensis to control Lycoriella pleuroti. Chin J Trop Crops 31:2267–2272Google Scholar
  41. Wu YQ, Zhao MQ, Yang SF, Duan Y, Jiang YL (2010) Predation of Orius sauteri (Hemiptera: Anthocoridae) on four insect pests. Chin J Biol Control 26:13–17Google Scholar
  42. Xing XX, Wang JZ, Qin HY, Zhang XM, Duan LQ (2010) Biological Characteristics of Orius sauteri and its functional response to peach aphid. J Inner Mong Agric Univ 31:47–50Google Scholar
  43. Xu X, Enkegaard A (2009) Prey preference of Orius sauteri between western flower thrips and spider mites. Entomol Exp Appl 132:93–98CrossRefGoogle Scholar
  44. Yang C, Zhang X (1987) Six new species of Lycoriella (Diptera: Sciaridae) injuring cultivated mushroom in China. Entomotaxonomia 9:253–263Google Scholar
  45. Yang W, Guo F, Wan Z (2013) Yield and size of oyster mushroom grown on rice/wheat straw basal substrate supplemented with cotton seed hull. Saudi J Biol Sci 20:333–338CrossRefGoogle Scholar
  46. Yazdani M, Keller M (2015) The shape of the functional response curve of Dolichogenidea tasmanica (Hymenoptera: Braconidae) is affected by recent experience. Biol Control 97:63–69CrossRefGoogle Scholar
  47. Yi JH, Park IK, Choi KS, Shin SC, Ahn YJ (2008) Toxicity of medicinal plant extracts to Lycoriella ingenua (Diptera: Sciaridae) and Coboldia fuscipes (Diptera: Scatopsidae). J Asia Pac Entomol 11:221–223CrossRefGoogle Scholar
  48. Zamani A, Vafaei S, Vafaei R, Goldasteh S, Kheradmand K, Palevsky E, Weintraub P, Gerson U, Simoni S (2009) Effect of host plant on the functional response of Orius albidipennis (Hemiptera: Anthocoridae) to Tetranychus urticae (Acari: Tetranychidae). IOBC/WPRS Bull 50:125–129Google Scholar
  49. Zhang XM, Yang JK (1999) The common groups and the management of the fungivorous pests. Bull Biol 34:19–21Google Scholar
  50. Zhang AS, Yu Y, Li LL, Zhang SC, Men XY (2007) Functional response and searching rate of Orius sauteri adults on Frankliniella occidentalis nymphs. Chin J Ecol 26:1233–1237Google Scholar
  51. Zhang LM, Liu ZC, Sun XQ, Liu LX, Chen J (2008) Population dynamics of Orius strigicollis and Frankliniella intonsa on Chinese rose and predatory functional response. Chin J Biol Control 24:21–27Google Scholar
  52. Zhang HR, Shen DR, Yuan SY, Zhang XM, Zhang T, Li ZY (2010) Virulence of Beauveria bassiana to Lycoriella pleuroti in the laboratory. Edible Fungi China 6:025Google Scholar
  53. Zhao J, Guo X, Tan X, Desneux N, Zappala L, Zhang F, Wang S (2017) Using Calendula officinalis as a floral resource to enhance aphid and thrips suppression by the flower bug Orius sauteri (Hemiptera: Anthocoridae). Pest Manag Sci 73:515–520CrossRefGoogle Scholar
  54. Zhou X, Lei C (2002) Utilization efficiency and functional response of Orius similis Zheng (Hemiptera: Anthocoridae) to different preys. Acta Ecol Sin 22:2085–2090Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Shou-xian Wang
    • 1
  • Ning Di
    • 1
  • Xu Chen
    • 2
  • Fan Zhang
    • 1
  • Antonio Biondi
    • 3
  • Nicolas Desneux
    • 4
  • Su Wang
    • 1
    Email author
  1. 1.Institute of Plant and Environment ProtectionBeijing Academy of Agriculture and Forestry SciencesBeijingPeople’s Republic of China
  2. 2.Institute of Biological ControlJilin Agricultural University/Engineering Research Center of Natural Enemy InsectChangchunPeople’s Republic of China
  3. 3.Department of Agriculture, Food and EnvironmentUniversity of CataniaCataniaItaly
  4. 4.INRA (French National Institute for Agricultural Research), UMR 1355-7254, CNRS, Université Côte d’AzurSophia-AntipolisFrance

Personalised recommendations