Journal of Pest Science

, Volume 92, Issue 1, pp 201–212 | Cite as

Population genetics of the Australian eucalypt pest Thaumastocoris peregrinus: evidence for a recent invasion of Sydney

  • Nathan LoEmail author
  • Ashley Montagu
  • Ann Noack
  • Helen Nahrung
  • Heng Wei
  • Mark Eldridge
  • Karen-Ann Gray
  • Harley A. Rose
  • Gerasimos Cassis
  • Rebecca N. Johnson
  • Simon Lawson
Original Paper


Biological invasions represent a major threat to agriculture and forestry across the globe. Thaumastocoris peregrinus is a small sap-sucking heteropteran bug that has recently invaded a number of eucalypt plantations worldwide from its native range in Australia. To date, no studies have examined the range of this insect within Australia, and its population genetics remain poorly understood. We sampled T. peregrinus from 16 populations from South East Queensland, across New South Wales (NSW) and Victoria to south-eastern South Australia, and generated microsatellite and mtDNA data for ~ 200 individuals. Population genetic analyses consistently revealed moderate levels of genetic isolation by distance among populations across the range. Nonetheless, T. peregrinus has undergone dispersal across large distances, as revealed by the presence of identical mitochondrial haplotypes in both South East Queensland and South Australia. Two populations within the Sydney area (NSW) were divergent from other populations based on STRUCTURE and factorial correspondence analysis. They also had relatively low allelic richness and haplotype diversity indices. These results suggest they are the result of a relatively recent invasion event, consistent with their discovery in 2001. Pairwise genetic distance analyses suggest that the source of the invasion may have been central NSW. Our study provides an important framework for understanding the biology of this pest in its native environment, and may have implications for determining how it has invaded multiple areas worldwide.


Bronzing bug Hemiptera Invasive insect pest Microsatellites Mitochondrial COI Plantation forestry 



The authors wish to thank Michael Brown for his generous financial assistance, which allowed the collections to take place, and Cleo Gardiner for helping with the collections.

Supplementary material

10340_2018_995_MOESM1_ESM.pdf (44 kb)
Supplementary material 1 (PDF 44 kb)
10340_2018_995_MOESM2_ESM.pdf (49 kb)
Supplementary material 2 (PDF 49 kb)


  1. Brockerhoff EG, Bain J, Kimberley M, Knížek M (2006) Interception frequency of exotic bark and ambrosia beetles (Coleoptera: Scolytinae) and relationship with establishment in New Zealand and worldwide. Can J For Res 36:289–298CrossRefGoogle Scholar
  2. Carpintero DL, Dellapé PM (2006) A new species of Thaumastocoris Kirkaldy from Argentina (Heteroptera: Thaumastocoridae: Thaumastocorinae). Zootaxa 1228:61–68Google Scholar
  3. Cassis G, Schuh RT, Brailovsky H (1999) A review of Onymocoris (Heteroptera: Thaumastocoridae), with a new species, and notes on hosts and distributions of other thaumastocorid species. Acta Soc Zool Bohem 63:19–36Google Scholar
  4. Chapman JW, Nesbit RL, Burgin LE, Reynolds DR, Smith AD, Middleton DR, Hill JK (2010) Flight orientation behaviors promote optimal migration trajectories in high-flying insects. Science 327:682–685CrossRefGoogle Scholar
  5. Chapuis MP, Estoup A (2007) Microsatellite null alleles and estimation of population differentiation. Mol Biol Evol 24:621–631CrossRefGoogle Scholar
  6. Csilléry K, Blum MGB, Gaggiotti OE, François O (2010) Approximate Bayesian Computation (ABC) in practice. Trends Ecol Evol 25:410–418CrossRefGoogle Scholar
  7. Dabrowski M, Bornelöv S, Kruczyk M, Baltzer N, Komorowski J (2015) ‘True’ null allele detection in microsatellite loci: a comparison of methods, assessment of difficulties and survey of possible improvements. Mol Ecol Res 15:477–488CrossRefGoogle Scholar
  8. Drake VA, Farrow RA (1988) The influence of atmospheric structure and motions on insect migration. Ann Rev Entomol 33:183–210CrossRefGoogle Scholar
  9. Drake CJ, Slater JA (1957) The phylogeny and systematics of the family Thaumastocoridae (Hemiptera: Heteroptera). Ann Entomol Soc Am 50:353–370CrossRefGoogle Scholar
  10. Estoup A, Guillemaud T (2010) Reconstructing routes of invasion using genetic data: why, how and so what? Mol Ecol 19:4113–4130CrossRefGoogle Scholar
  11. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620CrossRefGoogle Scholar
  12. Goudet J, Perrin N, Waser P (2002) Tests for sex-biased dispersal using bi-parentally inherited genetic markers. Mol Ecol 11:1103–1114CrossRefGoogle Scholar
  13. Gray KA, Noack AE, Johnson RN, Eldridge MDB, Bess EC, Lo N, Rose HA (2010) Eleven di-nucleotide polymorphic microsatellite markers for the winter bronzing bug Thaumastocoris peregrinus Carpintero and Dellapé (Heteroptera: Thaumastocoridae) Mol. Ecol Res 10:1106–1108CrossRefGoogle Scholar
  14. Hodel DR, Arakelian G, Ohara LM (2016) The Bronze Bug: another new threat to eucalypts in California. Palm Arbor 5:1–11Google Scholar
  15. Huelsenbeck JP, Ronquist F (2001) MRBAYES: bayesian inference of phylogenetic trees. Bioinformatics 17:754–755CrossRefGoogle Scholar
  16. Hulme PE (2009) Trade, transport and trouble: managing invasive species pathways in an era of globalization. J Appl Ecol 46:10–18CrossRefGoogle Scholar
  17. Hurley BP, Garnas J, Wingfield MJ, Branco M, Richardson DM, Slippers B (2016) Increasing numbers and intercontinental spread of invasive insects on eucalypts. Biol Invasions 18:921–933CrossRefGoogle Scholar
  18. Hutchison DW, Templeton AR (1999) Correlation of pairwise genetic and geographic distance measures: inferring the relative influences of gene flow and drift on the distribution of genetic variability. Evolution 53:1898–1914CrossRefGoogle Scholar
  19. Jiménez-Quiroz E, Vanegas-Rico JM, Morales-Martínez O, Lomeli-Flores JR, Rodríguez-Leyva E (2016) First Record of the Bronze Bug, Thaumastocoris peregrinus Carpintero and Dellapé 2006 (Hemiptera: Thaumastocoridae), in Mexico. J Agric Urban Entomol 32:35–39CrossRefGoogle Scholar
  20. Johnson MS, Black R (1984) The Wahlund effect and the geographical scale of variation in the intertidal limpet Siphonaria sp. Mar Biol 79:295–302CrossRefGoogle Scholar
  21. Keane RM, Crawley MJ (2002) Exotic plant invasions and the enemy release hypothesis. Trends Ecol Evol 17:164–170CrossRefGoogle Scholar
  22. Leigh JW, Bryant D (2015) popart: full-feature software for haplotype network construction. Methods Ecol Evol 6:1110–1116CrossRefGoogle Scholar
  23. Librado P, Rozas Z (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452CrossRefGoogle Scholar
  24. Miller MP (2005) Alleles In Space (AIS): computer software for the joint analysis of interindividual spatial and genetic information. J Hered 96:722–724CrossRefGoogle Scholar
  25. Mutitu EK, Garnas JR, Hurley BP, Wingfield MJ, Harney M, Bush SJ, Slippers B (2013) Biology and rearing of Cleruchoides noackae (Hymenoptera: Mymaridae), an egg parasitoid for the biological control of Thaumastocoris peregrinus (Hemiptera: Thaumastocoridae). J Econ Entomol 106:1979–1985CrossRefGoogle Scholar
  26. Nadel RL, Noack AE (2012) Current understanding of the biology of Thaumastocoris peregrinus in the quest for a management strategy. Int J Pest Manag 58:257–266CrossRefGoogle Scholar
  27. Nadel RL, Slippers B, Scholes MC, Lawson SA, Noack AE, Wilcken CF, Bouvet JP, Wingfield MJ (2009) DNA bar-coding reveals source and patterns of Thaumastocoris peregrinus invasions in South Africa and South America. Biol Invasions 12:1067–1077CrossRefGoogle Scholar
  28. Noack AE (2002) Thaumastocoridae: an investigation. Accessed 8 July 2011
  29. Noack AE (2009) The taxonomic revision of the genus Thaumastocoris and the biology and chemical control of the eucalypt pest Thaumastocoris peregrinus (Heteroptera: Thaumastocoridae). Ph.D. thesis, The University of SydneyGoogle Scholar
  30. Noack AE, Rose HA (2007) Life-history of Thaumastocoris peregrinus and Thaumastocoris sp. in the laboratory with some observations on behaviour. Gen Appl Entomol 36:27–33Google Scholar
  31. Noack AE, Kaapro J, Bartimote-Aufflick K, Mansfield S, Rose HR (2009) Efficacy of imidacloprid in the control of Thaumastocoris peregrinus on Eucalyptus scoparia in Sydney, Australia. Arboricult Urb For 35:192–196Google Scholar
  32. Noack AE, Cassis G, Rose HA (2011) Systematic revision of Thaumastocoris Kirkaldy (Hemiptera: Heteroptera: Thaumastocoridae). Zootaxa 3121:1–60Google Scholar
  33. Novoselsky T, Freidberg A (2016) First record of Thaumastocoris peregrinus (Hemiptera: Thaumastocoridae) in the Middle East, with biological notes on its relations with eucalyptus trees. Isr J Entomol 46:43–55Google Scholar
  34. Orantes LC, Zhang W, Mian MAR, Michel AP (2012) Maintaining genetic diversity and population panmixia through dispersal and not gene flow in a holocyclic heteroecious aphid species. Heredity 109:127–134CrossRefGoogle Scholar
  35. Paine TD, Steinbauer MJ, Lawson SA (2011) Native and exotic pests of Eucalyptus: a worldwide perspective. Annu Rev Entomol 56:181–201CrossRefGoogle Scholar
  36. Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinformatics 28:2537–2539CrossRefGoogle Scholar
  37. Pimentel D, McNair S, Janecka J, Wightman J, Simmonds C, O’Connell C, Wong E, Russel L, Zern J, Aquino T, Tsomondo T (2001) Economic and environmental threats of alien plant, animal, and microbe invasions. Agric Ecosyst Environ 84:1–20CrossRefGoogle Scholar
  38. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959Google Scholar
  39. Rejmánek M, Richardson DM (2011) Eucalypts. In: Simberloff D, Rejmánek M (eds) Encyclopedia of biological invasions. University of California Press, Los Angeles, pp 203–209Google Scholar
  40. Saavedra MC, Avila GA, Withers TM, Holwell GI (2015) The potential global distribution of the Bronze bug Thaumastocoris peregrinus Carpintero and Dellapé (Hemiptera: Thaumastocoridae). Agric For Entomol 17:375–388CrossRefGoogle Scholar
  41. Santadino M, Brentassi ME, Fanello DD, Coviella C (2017) First evidence of Thaumastocoris peregrinus (Heteroptera: Thaumastocoridae) feeding from mesophyll of eucalyptus leaves. Environ Entomol 46:251–257Google Scholar
  42. Soliman EP, Wilcken CF, Pereira JM, Dias TKR, Zaché B, Dal Pogetto MHFA, Barbosa LR (2012) Biology of Thaumastocoris peregrinus in different eucalyptus species and hybrids. Phytoparasitica 40:223–230CrossRefGoogle Scholar
  43. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis, version 6.0. Mol Biol Evol 30:2725–2729CrossRefGoogle Scholar
  44. Wilcken CF, Soliman EP, Nogueira de Sá LA, Barbosa LR, Dias TKR, Ferreira-Filho PJ, Oliveir RJR (2010) Bronze bug Thaumastocoris peregrinus Carpintero and Dellapé (Hemiptera: Thaumastocoridae) on eucalyptus in Brazil and its distribution. J Plant Protect Res 50:201–205CrossRefGoogle Scholar
  45. Wingfield MJ, Slippers B, Hurley BP, Coutinho TA, Wingfield BD, Roux J (2008) Eucalypt pests and diseases: growing threats to plantation productivity. South For 70:139–144CrossRefGoogle Scholar
  46. Zhang Y, Wang L, Wu K, Wyckhuys KA, Heimpel GE (2008) Flight performance of the soybean aphid, Aphis glycines (Hemiptera: Aphididae) under different temperature and humidity regimens. Environ Entomol 37:301–306CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Nathan Lo
    • 1
    Email author
  • Ashley Montagu
    • 1
  • Ann Noack
    • 1
  • Helen Nahrung
    • 2
  • Heng Wei
    • 1
  • Mark Eldridge
    • 3
  • Karen-Ann Gray
    • 3
  • Harley A. Rose
    • 1
  • Gerasimos Cassis
    • 4
  • Rebecca N. Johnson
    • 1
    • 3
  • Simon Lawson
    • 2
  1. 1.School of Life and Environmental SciencesThe University of SydneySydneyAustralia
  2. 2.Forest Industries Research CentreUniversity of the Sunshine CoastSippy DownsAustralia
  3. 3.Australian Museum Research InstituteAustralian MuseumSydneyAustralia
  4. 4.School of Biological, Earth, and Environmental SciencesThe University of New South WalesSydneyAustralia

Personalised recommendations