Advertisement

The rapid spread of Leptoglossus occidentalis in Europe: a bridgehead invasion

  • V. Lesieur
  • E. Lombaert
  • T. Guillemaud
  • B. Courtial
  • W. Strong
  • A. Roques
  • M.-A. Auger-Rozenberg
Original Paper

Abstract

Retracing the routes of invasions and determining the origins of invading species is often critical in understanding biological invasions. The Western conifer seed bug, Leptoglossus occidentalis, an insect native of western North America, was first accidentally introduced to eastern North America and then to Europe. The colonization of the entire European continent occurred in ca. 10–15 years, probably promoted by independent introductions in different parts of Europe. A multi-marker approach (mtDNA and microsatellites) combined with approximate Bayesian computation analyses was used to track the origin of European populations and to determine whether this rapid invasion was caused by multiple introductions. Our results show that at least two independent introductions of L. occidentalis have occurred in Europe. Moreover, the analyses showed a stronger genetic similarity of European invasive populations with the eastern North American populations than with those of the native range, suggesting that invasive North American population acted as a bridgehead for European invasion. The results also revealed that natural dispersal as well as human-mediated transportations as hitchhikers probably enhanced the rapid spread of this invasive pest across Europe. This study illustrates the complexity of a rapid invasion and confirms that bridgehead and multiple introductions have serious implications for the success of invasion.

Keywords

Approximate Bayesian computation Microsatellite Mitochondrial DNA Multiple introductions Source population Western conifer seed bug 

Notes

Acknowledgements

We are indebted to C. Carvalho and N. Gillette (Institute of Forest Genetics, Placerville, USA), N. Wihelmi (Washington Department of Natural Resources, USA), B. Slonecker and S. Cook (University of Idaho, USA), K. Gibson and A. Gannon (Montana Department of Natural Resources and Conservation, USA), J. Egan, S. Kegley, T. Steel and B. Steed (USDA Forest Service, USA), W. Cranshaw (Colorado State University, USA), R. Campos (Universidad Autonoma Chapingo), H. Russell (Michigan State University, USA), J. Hahn (University of Minnesota, USA), S. Passoa (APHIS—USDA, Ohio State University, USA), C. Sclar and B. Landhuis (Longwood Gardens Inc., USA), O. Lonsdale (Agriculture and Agri-Food Canada, Ottawa, Canada), J. Sweeney (Natural Resources Canada Canadian Forest Service, Canada), M. Giroux (Insectarium de Montreal, Canada), C. Briet (Vivarmor, France), C. Brua (Société Alsacienne d’Entomologie, France), C. Blazy (ONF, France), C. Kerdelhué (CBGP, France), E. de Sousa (National Institute of Biological Resources, Portugal), M. Á. Gómez de Dios (Agencia de Medio Ambiente y Agua de Andalucía, Spain), Antonio Muñoz Risueño (Spain), G. Sanchez Peña (ICP Forest, Spain), S. Chiesa (Italy), A. Battisti (University of Padova, Italy), C. Stauffer (University of Natural Resources and Applied Life Sciences, Vienna, Austria) N. Simov (National Museum of Natural History, Sofia, Bulgaria), M. Düzbastilar (University of Izmir, Turkey), G. Popov and A. Gubin (Donetsk Botanical Garden, Ukraine) and D. Musolin (University of Saint Petersburg, Russia) who provided bug samples. We greatly acknowledge support from the European project ISEFOR (Increasing Sustainability of European Forests: Modelling for Security Against Invasive Pests and Pathogens under Climate Change—collaborative project 245268), Cost action PERMIT (Pathway Evaluation and pest Risk Management In Transport) and the French Ministry of Agriculture, Food, Fisheries, Rural Affairs and Spatial Planning (convention DGFAR 01/09). We gratefully thank C. Bertheau (University of Franche-Comté, France) and J. Rousselet (INRA, Orléans) for their helpful advices. We are grateful to T. Bourgeois and C. Courtin for technical assistance. We thank S. Raghu (CSIRO Brisbane) and A. Sheppard (CSIRO Canberra) for their comments and suggestions on an early version of the manuscript. We also thank three anonymous reviewers for their helpful comments.

Compliance with Ethical Standards

Conflict of interest

The authors state that there is no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. Likewise, collection on public lands was conducted in compliance with existing regulations for insects defined as non-commercial, as determined by local offices. Furthermore, for sampling carried out on private lands, we had permission from the owners. Additionally, these field studies did not involve endangered or protected species.

Supplementary material

10340_2018_993_MOESM1_ESM.docx (6.1 mb)
Supplementary material 1 (DOCX 6276 kb)

References

  1. Ahn SJ, Son D, Choo HY, Park CG (2013) The first record on Leptoglossus occidentalis (Hemiptera: Coreidae) in Korea, a potential pest of the pinaceous tree species. J Asia Pac Entomol 16:281–284CrossRefGoogle Scholar
  2. Aukema B, Libeer R (2007) Eerste waarneming van Leptoglossus occidentalis in België (Heteroptera: Coreidae). Bull Soc R Belg Entomol 143:92–93Google Scholar
  3. Aukema JE, Leung B, Kovacs K, Chivers C, Britton KO, Englin J, Frankel SJ, Haight RG, Holmes TP, Liebhold AM, McCullough DG, Bv Holle (2011) Economic impacts of non-native forest insects in the continental United States. PLoS ONE 6(9):e24587CrossRefPubMedPubMedCentralGoogle Scholar
  4. Barta M (2016) Biology and temperature requirements of the invasive seed bug Leptoglossus occidentalis (Heteroptera: Coreidae) in Europe. J Pest Sci 89:31–44CrossRefGoogle Scholar
  5. Bates SL, Borden JH (2005) Life table for Leptoglossus occidentalis Heidemann (Heteroptera: Coreidae) and prediction of damage in lodgepole pine seed orchards. Agric For Entomol 7:145–151CrossRefGoogle Scholar
  6. Beaumont MA, Zhang WY, Balding DJ (2002) Approximate Bayesian computation in population genetics. Genetics 162:2025–2035PubMedPubMedCentralGoogle Scholar
  7. Ben Jamaa ML, Mejri M, Naves P, Sousa E (2013) Detection of Leptoglossus occidentalis Heidemann, 1910 (Heteroptera: Coreidae) in Tunisia. Afr Entomol 21:165–167CrossRefGoogle Scholar
  8. Binazzi F, Benassai D, Peverieri GS, Roversi PF (2013) Effects of Leptoglossus occidentalis Heidemann (Heteroptera Coreidae) egg age on the indigenous parasitoid Ooencyrtus pityocampae Mercet (Hymenoptera Encyrtidae). Redia 96:79–84Google Scholar
  9. Blatt SE (1994) An unusually large aggregation of the western conifer seed bug, Leptoglossus occidentalis (Hemiptera: Coreidae), in a man-made structure. J Entomol Soc B C 91:71–72Google Scholar
  10. Boheemen LA, Lombaert E, Nurkowski KA, Gauffre B, Rieseberg LH, Hodgins KA (2017) Multiple introductions, admixture and bridgehead invasion characterize the introduction history of Ambrosia artemisiifolia in Europe and Australia. Mol Ecol 26:5421–5434CrossRefPubMedGoogle Scholar
  11. Boissin E, Hurley B, Wingfield M, Vasaitis R, Stenlid J, Davis C, Groot Pd, Ahumada R, Carnegie A, Goldarazena A (2012) Retracing the routes of introduction of invasive species: the case of the Sirex noctilio woodwasp. Mol Ecol 21:5728–5744CrossRefPubMedGoogle Scholar
  12. Bracalini M, Benedettelli S, Croci F, Terreni P, Tiberi R, Panzavolta T (2013) Cone and seed pests of Pinus pinea: assessment and characterization of damage. J Eco Entomol 106:229–234CrossRefGoogle Scholar
  13. Cavalli-Sforza LL, Edward AWF (1967) Phylogenetic analysis. Models and estimation procedures. Am J Hum Genet 19:233–257PubMedPubMedCentralGoogle Scholar
  14. Chapuis MP, Estoup A (2007) Microsatellite null alleles and estimation of population differentiation. Mol Biol Evol 24:621–631CrossRefPubMedGoogle Scholar
  15. Clement M, Posada D, Crandall KA (2000) TCS: a computer program to estimate gene genealogies. Mol Ecol 9:1657–1659CrossRefPubMedGoogle Scholar
  16. Cornuet JM, Pudlo P, Veyssier J, Dehne-Garcia A, Gautier M, Leblois R, Marin J-M, Estoup A (2014) DIYABC v2.0: a software to make approximate Bayesian Computation inferences about population history using single nucleotide polymorphism, DNA sequence and microsatellite data. Bioinformatics 30:1187–1189CrossRefPubMedGoogle Scholar
  17. Crandall KA, Templeton AR (1993) Empirical tests of some predictions from coalescent theory with applications to intraspecific phylogeny reconstruction. Genetics 134:959–969PubMedPubMedCentralGoogle Scholar
  18. Dempster A, Laird M, Rubin D (1977) Maximum likelihood from incompletedata via the EM algorithm. J R Stat Soc 39:1–38Google Scholar
  19. Dlugosch KM, Parker IM (2008) Founding events in species invasions: genetic variation, adaptive evolution, and the role of multiple introductions. Mol Ecol 17:431–449CrossRefPubMedGoogle Scholar
  20. Dusoulier F, Lupoli R, Aberlenc HP, Streito JC (2007) L’invasion orientale de Leptoglossus occidentalis en France: bilan de son extension biogéographique en 2007 (Hemiptera Coreidae). L’Entomologiste 63:303–308Google Scholar
  21. Earl DA, Vonholdt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359–361CrossRefGoogle Scholar
  22. Estoup A, Guillemaud T (2010) Reconstructing routes of invasion using genetic data: Why, how and so what? Mol Ecol 19:4113–4130CrossRefPubMedGoogle Scholar
  23. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620CrossRefPubMedGoogle Scholar
  24. Excoffier L, Laval G, Schneider S (2005) Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evol Bioinform 1:47–50CrossRefGoogle Scholar
  25. Farinha AO, Branco M, Pereira MF, Auger-Rozenberg MA, Maurício A, Yart A, Guerreiro V, Sousa EM, Roques A (2017) Micro X-ray computed tomography suggests cooperative feeding among adult invasive bugs Leptoglossus occidentalis on mature seeds of stone pine Pinus pinea. Agric For Entomol 20:18–27CrossRefGoogle Scholar
  26. Faúndez EI, Rocca JR (2017) La chinche de las coníferas occidental, Leptoglossus occidentalis Heidemann (Heteroptera: Coreidae) en Chile; rápida expansión, posibles impactos y desafíos. Rev Chil Entomol 42:25–27Google Scholar
  27. Fent M, Kment P (2011) First record of the invasive western conifer seed bug Leptoglossus occidentalis (Heteroptera: Coreidae) in Turkey. North West J Zool 7:72–80Google Scholar
  28. Gall WK (1992) Further eastern range extension and host records for Leptoglossus occidentalis (Heteroptera: Coreidae): well-documented dispersal of a household nuisance. Great Lakes Entomol 25:159–171Google Scholar
  29. Gandhi KJK, Herms DA (2010) North American arthropods at risk due to widespread Fraxinus mortality caused by the alien emerald ash borer. Biol Inv 12:1839–1846CrossRefGoogle Scholar
  30. Gapon DA (2012) First records of the western conifer seed bug Leptoglossus occidentalis Heid. (Heteroptera, Coreidae) from Russia and Ukraine, regularities in its distribution and possibilities of its range expansion in the Palaearctic region. Entomol Rev 93:174–181CrossRefGoogle Scholar
  31. Gapon DA (2015) First record of Leptoglossus occidentalis (Heteroptera: Coreidae) in Morocco. Heteropterus Rev Entomol 15:161–163Google Scholar
  32. Garnas JR, Auger-Rozenberg M-A, Roques A, Bertelsmeier C, Wingfield MJ, Saccaggi DL, Roy HE, Slippers B (2016) Complex patterns of global spread in invasive insects: eco-evolutionary and management consequences. Biol Inv 18:935–952CrossRefGoogle Scholar
  33. Goudet J (2002) FSTAT, a program to estimate and test gene diversities and fixation indices (version 2.9.3.2). Updated from Goudet (1995). Available from http://www2.unil.ch/popgen/softwares/fstat.htm
  34. Guillemaud T, Beaumont MA, Ciosi M, Cornuet JM, Estoup A (2010) Inferring introduction routes of invasive species using approximate Bayesian computation on microsatellite data. Heredity 104:88–99CrossRefPubMedGoogle Scholar
  35. Harry M, Solignac M, Lachaise D (1998) Molecular evidence for parallel evolution of adaptative syndromes in fig-breeding Lissocephala (Drosophilidae). Mol Phylogenet Evol 9:542–551CrossRefPubMedGoogle Scholar
  36. Hubisz MJ, Falush D, Stephens M, Pritchard JK (2009) Inferring weak population structure with the assistance of sample group information. Mol Ecol Resour 9:1322–1332CrossRefPubMedPubMedCentralGoogle Scholar
  37. Ishikawa T, Kikuhara Y (2009) Leptoglossus occidentalis Heidemann (Hemiptera: Coreidae), a presumable recent invader to Japan. Jpn J Entomol 12:115–116Google Scholar
  38. Javal M, Roques A, Haran J, Hérard F, Keena M, Roux G (2017) Complex invasion history of the Asian long-horned beetle: fifteen years after first detection in Europe. J Pest Sci.  https://doi.org/10.1007/s10340-017-0917-1.CrossRefGoogle Scholar
  39. Jermiin LS, Crozier RH (1994) The cytochrome b region in the mitochondrial DNA of the ant Tetraponera rufoniger: sequence divergence in Hymenoptera may be associated with nucleotide content. J Mol Evol 38:282–294CrossRefPubMedGoogle Scholar
  40. Juliano SA, Lounibos LP (2005) Ecology of invasive mosquitoes: effects on resident species and on human health. Ecol Lett 8:558–574CrossRefPubMedPubMedCentralGoogle Scholar
  41. Kenis M, Branco M (2010) Impact of alien terrestrial arthropods in Europe. In: Roques A, Kenis M, Lees D et al (eds) Alien terrestrial arthropods of Europe. Pensoft, Sofia, pp 51–71Google Scholar
  42. Kenis M, Roques A, Santini A, Liebhold AM (2017) Impact of non-native invertebrates and pathogens on market forest tree resources. In: Vila M, Hulme PE (eds) Impact of biological invasions on ecosystem services. Springer, Cham, pp 103–117CrossRefGoogle Scholar
  43. Kirk H, Dorn S, Mazzi D (2013) Molecular genetics and genomics generate new insights into invertebrate pest invasions. Evol Appl 6:842–856CrossRefPubMedPubMedCentralGoogle Scholar
  44. Koerber TW (1963) Leptoglossus occidentalis (Hemiptera, Coreidae), a newly discovered pest of coniferous seed. An Entomol Soc Am 56:229–234CrossRefGoogle Scholar
  45. Langella O (1999) Populations, Ver. 1.2.3. a population genetic software. Available from: http://bioinformatics.org/~tryphon/populations/
  46. Lesieur V (2014) Invasion de la punaise américaine Leptoglossus occidentalis en Europe: une contribution à la compréhension des invasions fulgurantes. Dissertation, University of OrléansGoogle Scholar
  47. Lesieur V, Courtial B, Roques A, Auger-Rozenberg MA (2014a) Isolation and characterization of 11 polymorphic microsatellite markers in the highly invasive Western conifer seed bug, Leptoglossus occidentalis (Heteroptera, Coreidae). Conserv Genet Resour 6:617–619CrossRefGoogle Scholar
  48. Lesieur V, Yart A, Guilbon S, Lorme P, Auger-Rozenberg M-A, Roques A (2014b) The invasive Leptoglossus seed bug, a threat for commercial seed crops, but for conifer diversity? Biol Inv 16:1833–1849CrossRefGoogle Scholar
  49. Lombaert E, Guillemaud T, Cornuet J-M, Malausa T, Facon B, Estoup A (2010) Bridgehead effect in the worldwide Invasion of the biocontrol Harlequin ladybird. PLoS ONE 5:e9743CrossRefPubMedPubMedCentralGoogle Scholar
  50. Lombaert E, Guillemaud T, Lundgren J, Koch R, Facon B, Grez A, Loomans A, Malausa T, Nedved O, Rhule E (2014) Complementarity of statistical treatments to reconstruct worldwide routes of invasion: the case of the Asian ladybird Harmonia axyridis. Mol Ecol 23:5979–5997CrossRefPubMedGoogle Scholar
  51. Malumphy C, Botting J, Bantock T, Reid S (2008) Influx of Leptoglossus occidentalis Heidemann (Coreidae) in England. Het News 2:7–9Google Scholar
  52. McPherson JE, Packauskas RJ, Taylor SJ, O’Brien MF (1990) Eastern range extension of Leptoglossus occidentalis with a key to Leptoglossus species of America north of Mexico (Heteroptera:Coreidae). Great Lakes Entomol 23:99–104Google Scholar
  53. Niccoli A, Benassai D, Croci F, Roversi P (2009) Anastatus bifasciatus ooparassitoide di Leptoglossus occidentalis. In: Proceedings XXII Congresso Nazionale Italiano di EntomologiaGoogle Scholar
  54. Paap T, Burgess TI, Wingfield MJ (2017) Urban trees: bridge-heads for forest pest invasions and sentinels for early detection. Biol Inv 19:3515–3526CrossRefGoogle Scholar
  55. Page RDC (1996) Tree view: an application to display phylogenetic trees on personal computers. Bioinformatics 12:357–358CrossRefGoogle Scholar
  56. Pérez Valcárcel J, Prieto Piloña F (2010) La contribución de registros fotográficos en internet para estudios faunísticos: el caso de la expansión iberobalear de la especie invasora Leptoglossus occidentalis Heidemann, 1910 (Hemiptera, Coreidae). Arq Entomol 4:45–52Google Scholar
  57. Petit RJ, El Mousadik A, Pons O (1998) Identifying populations for conservation on the basis of genetic markers. Conserv Biol 12:844–855CrossRefGoogle Scholar
  58. Pons O, Petit RJ (1996) Measuring and testing genetic differentiation with ordered versus unordered alleles. Genetics 144:1237–1245PubMedPubMedCentralGoogle Scholar
  59. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedPubMedCentralGoogle Scholar
  60. Rabitsch W, Heiss E (2005) Leptoglossus occidentalis Heidemann, 1910, eine amerikanische Adventivart auch in Österreich aufgefunden (Heteroptera: Coreidae). Berichte des naturwissenschaftlich-medizinischen Verein Innsbruck 92:131–135Google Scholar
  61. Ribes J, Escolà O (2005) Leptoglossus occidentalis Heidemann, 1910, a Nearctic bug (Hemiptera, Heteroptera, Coreidae) found in Catalonia, Spain. Sessio Conjucta d’Entomologia ICHN-SCL 13:47–50Google Scholar
  62. Rice WR (1989) Analyzing tables of statistical tests. Evolution 43:223–226CrossRefPubMedGoogle Scholar
  63. Ridge-O’Connor GE (2001) Distribution of the western conifer seed bug, Leptoglossus occidentalis Heidemann (Heteroptera: Coreidae) in Connecticut and parasitism by a tachinid fly, Trichopoda pennipes (F.) (Diptera: Tachinidae). Proc Entomol Soc Wash 103:364–366Google Scholar
  64. Rius M, Darling JA (2014) How important is intraspecific genetic admixture to the success of colonising populations? Trends Ecol Evol 29:233–242CrossRefPubMedGoogle Scholar
  65. Roques A (2010) Taxonomy, time and geographic patterns. In: Roques A, Kenis M, Lees D et al (eds) Alien terrestrial arthropods of Europe. Pensoft, Sofia, pp 11–26Google Scholar
  66. Roques A, Auger-Rozenberg M-A, Blackburn TM, Garnas J, Pyšek P, Rabitsch W, Richardson DM, Wingfield MJ, Liebhold AM, Duncan RP (2016) Temporal and interspecific variation in rates of spread for insect species invading Europe during the last 200 years. Biol Inv 18:907–920CrossRefGoogle Scholar
  67. Rosenberg NA (2004) DISTRUCT: a program for the graphical display of population structure. Mol Ecol Notes 4:137–138CrossRefGoogle Scholar
  68. Rossi J-P, Garcia J, Roques A, Rousselet J (2016a) Trees outside forests in agricultural landscapes: spatial distribution and impact on habitat connectivity for forest organisms. Landsc Ecol 31:243–254CrossRefGoogle Scholar
  69. Rossi J-P, Imbault V, Lamant T, Rousselet J (2016b) A citywide survey of the pine processionary moth Thaumetopoea pityocampa spatial distribution in Orléans (France). Urban For Urban Green 20:71–80CrossRefGoogle Scholar
  70. Rousset F (2008) GENEPOP ‘ 007: a complete re-implementation of the GENEPOP software for Windows and Linux. Mol Ecol Resour 8:103–106CrossRefPubMedGoogle Scholar
  71. Schaffner JC (1967) The occurrence of Theognis occidentalis in the midwestern United States (Hemiptera; Coreidae). J Kansas Entomol Soc 40:141–142Google Scholar
  72. Scudder G (2008) New provincial and state records for Heteroptera (Hemiptera) in Canada and the United States. J Entomol Soc B C 105:3–18Google Scholar
  73. Seebens H, Blackburn TM, Dyer EE, Genovesi P, Hulme PE, Jeschke JM, Pagad S, Pyšek P, Winter M, Arianoutsou M (2017) No saturation in the accumulation of alien species worldwide. Nat Commun 8:14435CrossRefPubMedPubMedCentralGoogle Scholar
  74. Simberloff D (2009) The role of propagule pressure in biological invasions. Annu Rev Ecol Evol Syst 40:81–102CrossRefGoogle Scholar
  75. Simov N (2008) Western conifer seed bug, Leptoglossus occidentalis Heidemann, 1910 (Heteroptera: Coreidae) already in Bulgaria. Hist Nat Bulgarica 19:179–180Google Scholar
  76. Strong W (2016) Lodgepole pine seedset increase by mesh bagging is due to Leptoglossus occidentalis (Hemiptera: Coreidae) exclusion. J Entomol Soc B C 112:3–18Google Scholar
  77. Tamburini M, Maresi G, Salvadori C, Battisti A, Zottele F, Pedrazzoli F (2012) Adaptation of the invasive western conifer seed bug Leptoglossus occidentalis to Trentino, an alpine region (Italy). Bull Insectol 65:161–170Google Scholar
  78. Taylor SJ, Tescari G, Villa M (2001) A nearctic pest of pinaceae accidentally introduced into Europe: Leptoglossus occidentalis (Heteroptera : Coreidae) in northern Italy. Entomol News 112:101–103Google Scholar
  79. Thompson JD, Higgins DG, Gibson TJ (1994) Clustal W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680CrossRefPubMedPubMedCentralGoogle Scholar
  80. van der Heyden T (2018) First record of Leptoglossus occidentalis Heidemann, 1910 (Hemiptera: Heteroptera: Coreidae: Coreinae: Anisoscelini) in the Golan Heights. Rev Gaditana Entomol 9:1–3Google Scholar
  81. Westphal MI, Browne M, MacKinnon K, Noble I (2008) The link between international trade and the global distribution of invasive alien species. Biol Inv 10:391–398CrossRefGoogle Scholar
  82. Zhu WB (2010) Exotic coreid bugs introduced into China. In: Proceeding of the 4th meeting of the international heteropterist’s society. Nankai University, Tianjin, China, July 12–17, 2010, Nankai University, Tianjin, p 71Google Scholar
  83. Zhu G-P, Rédei D, Kment P, Bu W-J (2013) Effect of geographic background and equilibrium state on niche model transferability: predicting areas of invasion of Leptoglossus occidentalis. Biol Inv 16:1069–1081CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • V. Lesieur
    • 1
    • 4
    • 5
  • E. Lombaert
    • 2
  • T. Guillemaud
    • 2
  • B. Courtial
    • 1
  • W. Strong
    • 3
  • A. Roques
    • 1
  • M.-A. Auger-Rozenberg
    • 1
  1. 1.INRA UR633 Zoologie ForestièreOrléans Cedex 2France
  2. 2.INRA, CNRSUniversité Côte d’Azur, ISASophia Antipolis CedexFrance
  3. 3.BC Ministry of Forests, Lands, Mines and Natural Resource OperationsKalamalka Forestry CentreVernonCanada
  4. 4.Montpellier-SupAgro, UMR CBGPMontferrier sur LezFrance
  5. 5.CSIRO European LaboratoryMontferrier sur LezFrance

Personalised recommendations