Advertisement

Journal of Pest Science

, Volume 91, Issue 3, pp 957–972 | Cite as

Philaenus spumarius: when an old acquaintance becomes a new threat to European agriculture

  • D. Cornara
  • D. Bosco
  • A. Fereres
Review

Abstract

The unique color pattern polymorphism and the foamy nymphal case of the meadow spittlebug Philaenus spumarius have attracted the attention of scientists for centuries. Nevertheless, since this species has never been considered a major threat to agriculture, biological, ecological and ethological data are missing and rather scattered. To date this knowledge has become of paramount importance, in view of the discovery of P. spumarius main role in the transmission of the bacterium Xylella fastidiosa in Italy, and possibly in other European countries. The aim of this review is to provide a state of the art about this species, with particular focus on those elements that could help developing environmental friendly and sustainable control programs to prevent transmission of X. fastidiosa. Moreover, recent findings on the role of the meadow spittlebug as vector of the fastidious bacterium within the first reported European bacterium outbreak in Apulia (South Italy) will be discussed.

Keywords

Spittlebug Olive Almond Grapevine Control options Reservoirs Vectors 

Notes

Acknowledgements

Authors would like to acknowledge an EFSA procurement action on the information on biology and control of vectors of Xylella fastidiosa, the European Union Horizon 2020 research and innovation program under Grant Agreement No. 635646 POnTE (Pest Organisms Threatening Europe), and Grant Agreement No. 727987 XF-ACTORS.

Compliance with ethical standards

Conflict of interest

The authors declare no conflicts of interest.

Human and animal rights statement

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. Almeida RP, Nunney L (2015) How do plant diseases caused by Xylella fastidiosa emerge? Plant Dis 99:1457–1467CrossRefGoogle Scholar
  2. Almeida RPP, Purcell AH (2003) Homalodisca coagulata (Hemiptera, Cicadellidae) transmission of Xylella fastidiosa to almond. Plant Dis 87:1255–1259CrossRefGoogle Scholar
  3. Almeida RP, Purcell AH (2006) Patterns of Xylella fastidiosa colonization on the precibarium of sharpshooter vectors relative to transmission to plants. Ann Entomol Soc Am 99:884–890CrossRefGoogle Scholar
  4. Almeida RP, Blua MJ, Lopes JR, Purcell AH (2005) Vector transmission of Xylella fastidiosa: applying fundamental knowledge to generate disease management strategies. Ann Entomol Soc Am 98:775–786CrossRefGoogle Scholar
  5. Andersen PC, Brodbeck BV, Mizell RF (1992) Feeding by the leafhopper, Homalodisca coagulata, in relation to xylem fluid chemistry and tension. J Insect Physiol 38:611–622CrossRefGoogle Scholar
  6. Barber GW, Ellis WO (1922) Eggs of Tree Cercopidae. Psyche 29:1–3CrossRefGoogle Scholar
  7. Ben-Ze’ev I, Kenneth RG (1981) Zoophthora radicans and Zoophthora petchi sp. nov. [Zygomycetes: Entomophthorales], two species of the “Sphaerosperma group” attacking leaf-hoppers and frog-hoppers [Hom.]. Entomophaga 26:131–142CrossRefGoogle Scholar
  8. Berry AJ, Willmer PG (1986) Temperature and the colour polymorphism of Philaenus spumarius (Homoptera: Aphrophoridae). Ecol Entomol 11:251–259CrossRefGoogle Scholar
  9. Biedermann R (2002) Leafhoppers (Hemiptera, Auchenorrhyncha) in fragmented habitats. Denisia 176:523–530Google Scholar
  10. Bleicher K, Orosz A, Cross J, Markó V (2010) Survey of leafhoppers, planthoppers and froghoppers (Auchenorrhyncha) in apple orchards in South-East England. Acta Phytopathol Hun 45:93–105CrossRefGoogle Scholar
  11. Blua MJ, Campbell K, Morgan DJW, Redak RA (2005) Impact of a screen barrier on dispersion behavior of Homalodisca coagulata (Hemiptera: Cicadellidae). J Econ Entomol 98:1664–1668PubMedCrossRefGoogle Scholar
  12. Bodino N, Plazio E, Cavalieri V, Dongiovanni E, Ripamonti M, Volani S, Gilioli G, Fumarola G, Di Carolo M, Porcelli F, Bosco D (2017) Host-plant association and host-shifting of nymphs and adults of Philaenus spumarius L. in Italian olive orchards. In: Proceedings 3rd Hemipteran-plant interactions symposium (HPIS), Madrid, Spain, 4–8 June 2017, p 36Google Scholar
  13. Braccini P, Pavan F (2000) Auchenorryncha: potential vectors of phytoplasms associated with vine yellows. Informatore Agrario 56:103–107Google Scholar
  14. Burrows M (2003) Biomechanics: froghopper insects leap to new heights. Nature 424:509PubMedCrossRefGoogle Scholar
  15. Chen X, Liang AP (2015) Identification of a self-regulatory pheromone system that controls nymph aggregation behavior of rice spittlebug Callitettix versicolor. Front Zool 12:1–12CrossRefGoogle Scholar
  16. Chen X, Meyer-Rochow VB, Fereres A, Morente A, Liang AP (2017) The role of biofoam in shielding spittlebug nymphs (Insecta, Hemiptera, Cercopidae) against bright light. Ecol Entomol.  https://doi.org/10.1111/een.12496 CrossRefGoogle Scholar
  17. Chmiel SM, Wilson MC (1979) Estimation of the lower and upper developmental threshold temperatures and duration of the nymphal stages of the meadow spittlebug, Philaenus spumarius. Environ Entomol 8:682–685CrossRefGoogle Scholar
  18. Civitello DJ, Cohen J, Fatima H, Halstead NT, Liriano J, McMahon TA, Ortega CN, Sauer EL, Sehgal T, Young S (2015) Biodiversity inhibits parasites: broad evidence for the dilution effect. Proc Natl Acad Sci 112:8667–8671PubMedPubMedCentralCrossRefGoogle Scholar
  19. Cornara D, Porcelli F (2014) Observations on the biology and ethology of Aphrophroridae: Philaenus spumarius in the Salento peninsula. In: Proceedings “International symposium on the European outbreak of Xylella fastidiosa in olive”, Gallipoli–Locorotondo, Italy, 21–24 Oct 2014Google Scholar
  20. Cornara D, Cavalieri V, Dongiovanni C, Altamura G, Palmisano F, Bosco D, Porcelli F, Almeida RP, Saponari M (2016a) Transmission of Xylella fastidiosa by naturally infected Philaenus spumarius (Hemiptera, Aphrophoridae) to different host plants. J Appl Entomol.  https://doi.org/10.1111/jen.12365 CrossRefGoogle Scholar
  21. Cornara D, Saponari M, Zeilinger AR, de Stradis A, Boscia D, Loconsole G, Bosco D, Martelli GP, Almeida RPP, Porcelli F (2016b) Spittlebugs as vectors of Xylella fastidiosa in olive orchards in Italy. J Pest Sci.  https://doi.org/10.1007/s10340-016-0793-0 CrossRefGoogle Scholar
  22. Cornara D, Sicard A, Zeilinger AR, Porcelli F, Purcell AH, Almeida RPP (2016c) Transmission of Xylella fastidiosa to grapevine by the meadow spittlebug. Phytopathology 106:1285–1290PubMedCrossRefGoogle Scholar
  23. Crews L, McCully M, Canny M, Huang C, Ling L (1998) Xylem feeding by spittlebug nymphs: some observations by optical and cryo-scanning electron microscopy. Am J Bot 85:449–460PubMedCrossRefGoogle Scholar
  24. Daugherty MP, Almeida RPP (2009) Estimating Xylella fastidiosa transmission parameters: decoupling sharpshooter number and feeding period. Entomol Exp Appl 132:84–92CrossRefGoogle Scholar
  25. de Meyer M, de Bruyn L (1984) On the phenology of some Pipunculidae (Diptera) in Belgium. Bulletin et Annales de La Société Royale Belge D’entomologie 120:123–131Google Scholar
  26. Delong DM, Severin HH (1950) Spittle-insect vectors of Pierce’s disease virus. Hilgardia 19:339–376CrossRefGoogle Scholar
  27. Denance N, Legendre B, Briand M, Olivier V, de Boisseson C, Poliakoff F, Jacques MA (2017) Several subspecies and sequence types are associated with the emergence of Xylella fastidiosa in natural settings in France. Plant Pathol.  https://doi.org/10.1111/ppa.12695 CrossRefGoogle Scholar
  28. Dongiovanni C, Cavalieri V, Altamura G, Di Carolo M, Fumarola G, Saponari M, Porcelli F (2016) Preliminary results of comparative efficacy evaluation trials against Philaenus spumarius L., vector of Xylella fastidiosa. Options Méditerranéennes, A No. 121, 2017—Xylella fastidiosa & the Olive Quick Decline Syndrome (OQDS). A serious worldwide challenge for the safeguard of olive trees, pp 79–80Google Scholar
  29. Drosopoulos S (2003) New data on the nature and origin of colour polymorphism in the spittlebug genus Philaenus (Hemiptera: Aphorophoridae). Ann Soc Entomol Fr 39:31–42CrossRefGoogle Scholar
  30. Drosopoulos S, Asche M (1991) Biosystematic studies on the spittlebug genus Philaenus with the description of a new species. Zool J Linn Soc 101:169–177CrossRefGoogle Scholar
  31. Drosopoulos S, Remane R (2000) Biogeographic studies on the spittlebug Philaenus signatus Melichar, 1896 species group (Hemiptera: Aphrophoridae) with the description of two new allopatric species. Ann Soc Entomol Fr 36:269–277Google Scholar
  32. Dugravot S, Backus EA, Reardon BJ, Miller TA (2008) Correlations of cibarial muscle activities of Homalodisca spp. sharpshooters (Hemiptera: Cicadellidae) with EPG ingestion waveform and excretion. J Insect Physiol 54:1467–1478PubMedCrossRefGoogle Scholar
  33. Eden-Green S, Balfas R, Sutarjo T (1992) Characteristics of the transmission of Sumatra disease of cloves by tube-building cercopoids, Hindola spp. Plant Pathol 41:702–712CrossRefGoogle Scholar
  34. Edwards WD (1935) Strawberry pests including the spittlebug. Ann Rep Oregon State Hortic Soc 27:58–65Google Scholar
  35. EFSA (2015) Scientific Opinion on the risk to plant health posed by Xylella fastidiosa in the EU territory, with the identification and evaluation of risk reduction options. EFSA J 13:3989CrossRefGoogle Scholar
  36. Fauna Europaea (2016) Museum für Naturkunde Leibniz-Institut für Evolutions- und Biodiversitätsforschung Invalidenstr. Berlin, Germany. https://fauna-eu.org/
  37. Fereres A (2015) Insect vectors as drivers of plant virus emergence. Curr Opin Virol 10:42–46PubMedCrossRefGoogle Scholar
  38. Fisher EH, Allen TC (1946) Alfalfa and clover severely damaged by spittlebugs. What’s new in farm science. Wis Agric Exp Stn Bull 469:15–16Google Scholar
  39. Frazier NW (1965) Xylem viruses and their insect vectors. In: Proceedings of the international conference on virus and vectors on perennial hosts, with special reference to Vitis, pp 91–99Google Scholar
  40. Frazier NW, Freitag JH (1946) 10 additional leafhopper vectors of the virus causing pierces disease of grapes. Phytopathology 36:634–637Google Scholar
  41. Freeman JA (1945) Studies in the distribution of insects by aerial currents. J Anim Ecol 104:128–154CrossRefGoogle Scholar
  42. Giampetruzzi A, Saponari M, Loconsole G, Boscia D, Savino VN, Almeida RP, Zicca S, Landa BB, Chacón-Diaz C, Saldarelli P (2017) Genome-wide analysis provides evidence on the genetic relatedness of the emergent Xylella fastidiosa genotype in Italy to isolates from Central America. Phytopathology 107:816–827PubMedCrossRefGoogle Scholar
  43. Gibson DO (1974) Batesian mimicry without distastefulness? Nature 250:77–79PubMedCrossRefGoogle Scholar
  44. Goidanich A (1954) Enciclopedia Agraria Italiana. Roma, REDAGoogle Scholar
  45. Grant JF, Lambdin PL, Follum RA (1998) Infestation levels and seasonal incidence of the meadow spittlebug (Homoptera: Cercopidae) on musk thistle in Tennessee. J Agric Entomol 15:83–91Google Scholar
  46. Guglielmino A, Bückle C, Remane R (2005) Contribution to the knowledge of the Auchenorrhyncha fauna of Central Italy (Hemiptera, Fulgoromorpha et Cicadomorpha). Marburger Entomologische Publikationen 3(3):13–98Google Scholar
  47. Gulijeva EM (1961) Pennitsa P. spumarius-vreditel’ Zernovykh lul’tur v Azerbaidzhane. Izvest Akad Navk SSR Ser Biol I Med Nauk 5:73–81Google Scholar
  48. Halkka O (1962) Equilibrium populations of Philaenus spumarius L. Nature 193:93–94CrossRefGoogle Scholar
  49. Halkka O (1964) Geographical, spatial and temporal variability in the balanced polymorphism of Philaenus spumarius. Heredity 19:383–401CrossRefGoogle Scholar
  50. Halkka O, Heinonen L, Raatikainen M, Vasarainen A (1966) Crossing experiments with Philaenus spumarius (Homoptera). Hereditas 56:306–312CrossRefGoogle Scholar
  51. Halkka O, Raatikainen M, Vasarainen A, Heinonen L (1967) Ecology and ecological genetics of Philaenus spumarius (L.)(Homoptera). Ann Zool Fenn 4:1–18Google Scholar
  52. Halkka O, Raatikainen M, Halkka L, Lokki J (1971) Factors determining the size and composition of island populations of Philaenus spumarius (L.)(Homoptera). Acta Entomol Fenn 28:83–100Google Scholar
  53. Halkka O, Kohila T, Komila T (1976) Persistence of visual polymorphism, despite a low rate of predation, in Philaenus spumarius (L.)(Homoptera, Aphrophoridae). Ann Zool Fenn 13:185–188Google Scholar
  54. Halkka O, Raatikainen M, Halkka L, Raatikainen T (1977) Coexistence of four species of spittle-producing Homoptera. Ann Zool Fenn 14:228–231Google Scholar
  55. Halkka A, Halkka L, Halkka O, Roukka K, Pokki J (2006) Lagged effects of North Atlantic Oscillation on spittlebug Philaenus spumarius (Homoptera) abundance and survival. Glob Change Biol 12:2250–2262CrossRefGoogle Scholar
  56. Harper G, Whittaker JB (1976) The role of natural enemies in the colour polymorphism of Philaenus spumarius (L.). J Anim Ecol 45:91–104CrossRefGoogle Scholar
  57. Henderson G, Hoffman GD, Jeanne RL (1990) Predation on cercopids and material use of the spittle in aphid-tent construction by prairie ants. Psyche 97:43–53CrossRefGoogle Scholar
  58. Hewitt WB, Frazier NW, Houston BR (1942) Transmission of Pierce’s disease of grapevine with a leafhopper. Phytopathology 32:8Google Scholar
  59. Hill B, Purcell AH (1995) Acquisition and retention of Xylella fastidiosa by an efficient vector, Graphocephala atropunctata. Phytopathology 85:209–212.  https://doi.org/10.1094/Phyto-85-209 CrossRefGoogle Scholar
  60. Hill BL, Purcell AH (1997) Populations of Xylella fastidiosa in plants required for transmission by an efficient vector. Phytopathology 87:1197–1201PubMedCrossRefGoogle Scholar
  61. Hill GT, Sinclair WA (2000) Taxa of leafhoppers carrying phytoplasmas at sites of ash yellows occurrence in New York State. Plant Dis 84:134–138CrossRefGoogle Scholar
  62. Hoffman G, Mcevoy PB (1985a) Mechanical limitations on feeding by meadow spittlebugs Philaenus spumarius (Homoptera: Cercopidae) on wild and cultivated host plants. Ecol Entomol 10:415–426CrossRefGoogle Scholar
  63. Hoffman GD, McEvoy PB (1985b) The mechanism of trichome resistance in Anaphalis margaritacea to the meadow spittlebug Philaenus spumarius. Entomol Exp Appl 39:123–129CrossRefGoogle Scholar
  64. Horsfield D (1977) Relationships between feeding of Philaenus spumarius (L.) and the amino acid concentration in the xylem sap. Ecol Entomol 2:259–266CrossRefGoogle Scholar
  65. Horsfield D (1978) Evidence for xylem feeding by Philaenus spumarius (L.)(Homoptera: Cercopidae). Entomol Exp Appl 24:95–99CrossRefGoogle Scholar
  66. Ivanauskas A, Valiūnas D, Jomantienė R, Picciau L, Davis RE (2014) Possible insect vectors of “Candidatus Phytoplasma asteris” and “Ca. Phytoplasma pruni”-related strains in Lithuania. Žemdirbystė (Agriculture) 101:313–320CrossRefGoogle Scholar
  67. Karban R, Strauss SY (2004) Physiological tolerance, climate change, and a northward range shift in the spittlebug, Philaenus spumarius. Ecol Entomol 29:251–254CrossRefGoogle Scholar
  68. Keskinen E, Meyer-Rochow VB (2004) Post-embryonic photoreceptor development and dark/light adaptation in the spittle bug Philaenus spumarius (L.)(Homoptera, Cercopidae). Arthropod Struct Dev 33:405–417PubMedCrossRefGoogle Scholar
  69. Killiny N, Almeida RP (2009) Xylella fastidiosa afimbrial adhesins mediate cell transmission to plants by leafhopper vectors. Appl Environ Microb 75:521–528CrossRefGoogle Scholar
  70. Killiny N, Prado SS, Almeida RP (2010) Chitin utilization by the insect-transmitted bacterium Xylella fastidiosa. Appl Environ Microb 76:6134–6140CrossRefGoogle Scholar
  71. Killiny N, Rashed A, Almeida RP (2012) Disrupting the transmission of a vector-borne plant pathogen. Appl Environ Microb 78:638–643CrossRefGoogle Scholar
  72. King DR (1952) The ecology of the Meadow Spittlebug Philaenus leucophthalmus (L.) L Family Cercopidae. PhD thesis, The Ohio State UniversityGoogle Scholar
  73. Koga R, Bennett GM, Cryan JR, Moran NA (2013) Evolutionary replacement of obligate symbionts in an ancient and diverse insect lineage. Environ Microbiol 15:2073–2081PubMedCrossRefGoogle Scholar
  74. Kogan M (1998) Integrated pest management: historical perspectives and contemporary developments. Ann Rev Entomol 43:243–270CrossRefGoogle Scholar
  75. Krell RK, Boyd EA, Nay JE, Park YL, Perring TM (2007) Mechanical and insect transmission of Xylella fastidiosa to Vitis vinifera. Am J Enol Vitic 58:211–216Google Scholar
  76. Krewer G, Dutcher JD, Chang CJ (2002) Imidacloprid insecticide slows development of pierce’s disease in bunch grapes. J Entomol Sci 37:101–112.  https://doi.org/10.18474/0749-8004-37.1.101 CrossRefGoogle Scholar
  77. Labroussaa F, Zeilinger A, Almeida RP (2016) Blocking the transmission of a non-circulative vector-borne plant pathogenic bacterium. Mol Plant Microbe Interacions 29:535–544CrossRefGoogle Scholar
  78. Landi F, Prandini A, Paltrinieri S, Mori N, Bertaccini A (2007) Detection of different types of phytoplasmas in stone fruit orchards in northern Italy. Bull Insectol 60:163Google Scholar
  79. Lavigne B (1959) Biology of Philaenus leucophthalmus (L.), in Massachusetts. J Econ Entomol 52:904–907CrossRefGoogle Scholar
  80. Lees DR, Dent CS (1983) Industrial melanism in the spittlebug Philaenus spumarius (L) (Homoptera: Aphrophoridae). Biol J Linn Soc 19:115–129CrossRefGoogle Scholar
  81. Lewis WJ, Van Lenteren JC, Phatak SC, Tumlinson JH (1997) A total system approach to sustainable pest management. Proc Natl A Sci 94:12243–12248CrossRefGoogle Scholar
  82. Lis A, Maryańska-Nadachowska A, Kajtoch L (2015) Relations of Wolbachia infection with Phylogeography of Philaenus spumarius (Hemiptera: Aphrophoridae) populations within and beyond the Carpathian contact zone. Microb Ecol 70(2):509–521PubMedPubMedCentralCrossRefGoogle Scholar
  83. Loconsole G, Saponari M, Boscia D, D’Attoma G, Morelli M, Martelli GP, Almeida RPP (2016) Intercepted isolates of Xylella fastidiosa in Europe reveal novel genetic diversity. Eur J Plant Pathol 146:85–94CrossRefGoogle Scholar
  84. Lopes JRS, Krugner R (2016) Transmission ecology and epidemiology of the citrus variegated chlorosis strain of Xylella fastidiosa. In: Vector-mediated transmission of plant pathogens. pp 195–208Google Scholar
  85. Malone M, Watson R, Pritchard J (1999) The spittlebug Philaenus spumarius feeds from mature xylem at the full hydraulic tension of the transpiration stream. New Phytol 143:261–271CrossRefGoogle Scholar
  86. Martelli GP, Boscia D, Porcelli F, Saponari M (2016) The olive quick decline syndrome in south-east Italy: a threatening phytosanitary emergency. Eur J Plant Pathol 144:235–243CrossRefGoogle Scholar
  87. Maryańska-Nadachowska A, Kuznetsova VG, Lachowska D, Drosopoulos S (2012) Mediterranean species of the spittlebug genus Philaenus: modes of chromosome evolution. J Insect Sci 12:1–17CrossRefGoogle Scholar
  88. Masters GJ, Brown VK, Clarke IP, Whittaker JB, Hollier JA (1998) Direct and indirect effects of climate change on insect herbivores: Auchenorrhyncha (Homoptera). Ecol Entomol 23:45–52CrossRefGoogle Scholar
  89. Matteoni JA, Sinclair WA (1988) Elm yellows and ash yellows. In: Hiruki C (ed) Tree mycoplasmas and mycoplasma diseases. University of Alberta Press, Edmonton, pp 19–31Google Scholar
  90. Medler JT (1955) Method of predicting the hatching date of the meadow spittlebug. J Econ Entomol 48:204–205CrossRefGoogle Scholar
  91. Mundinger FG (1946) The control of spittle insects in strawberry plantings. J Econ Entomol 39:299–305CrossRefGoogle Scholar
  92. Nast J (1972) Palaearctic Auchenorrhyncha (Homoptera) an annotated checklist. Polish Science Publications, WarszawaGoogle Scholar
  93. Nicoli Aldini R, Guardiani MC, Cravedi P (1998) Faunistical notes on the hoppers (Homoptera Auchenorrhyncha) in vineyards in the province of Piacenza. Bollettino di Zoologia Agraria e di Bachicoltura 30:61–68Google Scholar
  94. Nieri R, Mazzoni V, Gordon SD, Krugner R (2017) Mating behavior and vibrational mimicry in the glassy-winged sharpshooter, Homalodisca vitripennis. J Pest Sci 90:887–899CrossRefGoogle Scholar
  95. Novotny V (1992) Vertical-distribution of leafhoppers (Hemiptera, Auchenorrhyncha) within a meadow community. Acta Entomol Bohemos 89:13–20Google Scholar
  96. Novotny V, Wilson MR (1997) Why are there no small species among xylem-sucking insects? Evol Ecol 11:419–437CrossRefGoogle Scholar
  97. Olmo D, Nieto A, Androver F, Urbano A, Beidos O, Juan A et al (2017) First detection of Xylella fastidiosa on cherry (Prunus avium) and Polygala myrtifolia plants, in Mallorca Island, Spain. Plant Dis 101:1820Google Scholar
  98. Ossiannilsson F (1981) The Auchenorrhyncha (Homoptera) of Fennoscandia and Denmark. Part 2: the families Cicadidae, Cercopidae, Membracidae, and Cicadellidae (excl. Deltocephalinae). Fauna Entomologica Scandinavica 7:223–593Google Scholar
  99. Pagliano G, Alma A (1997) Ricerche etologiche su Gorytini e Alyssonini (Hymenoptera Sphecidae) parassitoidi di Auchenorryncha (Rhynchota Homoptera). Rivista Piemontese di Storia Naturale 18:173–181Google Scholar
  100. Paião FG, Meneguim AM, Casagrande EC, Leite RP (2002) Envolvimento de cigarras (Homoptera, Cicadidae) na transmissão de Xylella fastidiosa em cafeeiro. Fitopatol Bras 27:67Google Scholar
  101. Pavan F (2000) Occurrence on elm and phenology of Auchenorrhyncha potential vectors of the phytoplasma associated with elm yellows disease. Bollettino di Zoologia Agraria e di Bachicoltura 32:59–68Google Scholar
  102. Pavan F (2006) Xylem-feeding auchenorrhyncha potentially involved in Pierce’s disease of grapevines in Europe. Bollettino di Zoologia Agraria e di Bachicoltura 38:103–114Google Scholar
  103. Pearson WD (1991) Effect of meadow spittlebug and Australian crop mirid on white clover seed production in small cages. N Z J Agric Res 34:439–444CrossRefGoogle Scholar
  104. Phillipson J (1960) A contribution to the feeding biology of Mitopus morio (F) (Phalangida). J Anim Ecol 29:35–43CrossRefGoogle Scholar
  105. Ponder KL, Watson RJ, Malone M, Pritchard J (2002) Mineral content of excreta from the spittlebug Philaenus spumarius closely matches that of xylem sap. New Phytol 153:237–242CrossRefGoogle Scholar
  106. Poos FW (1953) The meadow spittlebug, how to control it. U. S. D. A. Leaflet, p 341Google Scholar
  107. Purcell AH (1980) Almond leaf scorch: leafhopper and spittlebug vectors. J Econ Entomol 73:834–838CrossRefGoogle Scholar
  108. Purcell AH (1981) Vector preference and inoculation efficiency as components of resistance to Pierce’s disease in European grape cultivars. Phytopathology 71:429–435CrossRefGoogle Scholar
  109. Purcell AH (1997) Xylella fastidiosa, a regional problem or global threat? J Plant Pathol 79:99–105Google Scholar
  110. Purcell AH, Finlay AH, McLean DL (1979) Pierce’s disease bacterium: mechanism of transmission by leafhopper vectors. Science 206:839–841PubMedCrossRefGoogle Scholar
  111. Purcell AH, Gravena S, Donadio LC (1994) Sharpshooter in citrus crops. In: Citrus-integrated management of insect and mite pests. Bebedouro, Estaçao Experimental de Citricultura, pp 213–229Google Scholar
  112. Puterka GJ, Glenn DM, Sekutowski DG, Unruh TR, Jones SK (2003) Particle film, surround WP, effects on glassy-winged sharpshooter behavior and its utility as a barrier to sharpshooter infestation in grapes. Plant Health Prog.  https://doi.org/10.1094/PHP-2003-0321-RS CrossRefGoogle Scholar
  113. Putman WL (1953) Notes on the bionomics of some Ontario Cercopids (Homoptera). Can Entomol 85:244–248CrossRefGoogle Scholar
  114. Quartau JA, Borges PA (1997) On the colour polymorphism of Philaenus spumarius (L.)(Homoptera, Cercopidae) in Portugal. Miscellania Zoologica 20:19–30Google Scholar
  115. Ranieri E, Ruschioni S, Riolo P, Isidoro N, Romani R (2016) Fine structure of antennal sensilla of the spittlebug Philaenus spumarius L. (Insecta: Hemiptera: Aphrophoridae). I. Chemoreceptors and thermo-hygroreceptors. Arthropod Struct Dev 45:432–439PubMedCrossRefGoogle Scholar
  116. Rashed A, Killiny N, Kwan J, Almeida RP (2011) Background matching behaviour and pathogen acquisition: plant site preference does not predict the bacterial acquisition efficiency of vectors. Arthropod Plant Interactions 5:97–106CrossRefGoogle Scholar
  117. Robertson A, Gibbs AJ (1937) Spermatogenesis and fertilization in Philaenus spumarius Fallen. J Trop Med Hyg 40:257–262Google Scholar
  118. Rodrigues AS, Silva SE, Marabuto E, Silva DN, Wilson MR, Thompson V et al (2014) New mitochondrial and nuclear evidences support recent demographic expansion and an atypical phylogeographic pattern in the spittlebug Philaenus spumarius (Hemiptera, Aphrophoridae). PLoS ONE 9(6):e98375PubMedPubMedCentralCrossRefGoogle Scholar
  119. Salerno M, Russo V, Sefa V, Lamaj F, Basher N, Verrastro V, Porcelli F (2017) Zelus renardii an assassin bug candidate for Philaenus spumarius biocontrol. In: European conference on Xylella. Finding answer to a global problem. Palma de Mallorca, 13–15 Nov 2017, pp 22–23Google Scholar
  120. Sanderlin RS, Melanson RA (2010) Insect transmission of Xylella fastidiosa to pecan. Plant Dis 94:465–470CrossRefGoogle Scholar
  121. Saponari M, Boscia D, Nigro F, Martelli GP (2013) Identification of DNA sequences related to Xylella fastidiosa in oleander, almond and olive trees exhibiting leaf scorch symptoms in Apulia (southern Italy). J Plant Pathol 95:668Google Scholar
  122. Saponari M, Loconsole G, Cornara D, Yokomi RK, De Stradis A, Boscia D, Bosco D, Martelli GP, Krugner R, Porcelli F (2014) Infectivity and transmission of Xylella fastidiosa by Philaenus spumarius (Hemiptera: Aphrophoridae) in Apulia, Italy. J Econ Entomol 107:1316–1319PubMedCrossRefGoogle Scholar
  123. Saponari M, Boscia D, Altamura G, D’Attoma G, Cavalieri V, Loconsole G, Zicca S, Dongiovanni C, Palmisano F, Susca L, Morelli M, Potere O, Saponari A, Fumarola G, Di Carolo M, Tavano D, Savino V, Martelli GP (2016) Pilot project on Xylella fastidiosa to reduce risk assessment uncertainties. EFSA Supporting Publications. EN-1013, pp 60Google Scholar
  124. Scholl JM, Medler JT (1947) Spittle bugs in relation to alfalfa seed production in Wisconsin. J Econ Entomol 40:446–448PubMedCrossRefGoogle Scholar
  125. Schulz CA, Meijer J (1978) Migration of leafhoppers (Homoptera: Auchenorrhyncha) into a new polder. Ecography 1:73–78CrossRefGoogle Scholar
  126. Severin H (1950) Spittle-insect vectors of Pierce’s disease virus. II. Life history and virus transmission. Hilgardia 19:357–376CrossRefGoogle Scholar
  127. Sinclair WA, Griffiths HM (1994) Ash yellows and its relationship to dieback and decline of ash. Annu Rev Phytopathol 32:49–60CrossRefGoogle Scholar
  128. Smith RL (ed) (1984) Human sperm competition. In: Sperm competition and the evolution of animal mating systems. Academic Press, San Diego, CA, pp 602–652Google Scholar
  129. Stewart AJA, Lees DR (1988) Genetic control of colour/pattern polymorphism in British populations of the spittlebug Philaenus spumarius (L.)(Homoptera: Aphrophoridae). Biol J Linn Soc 34:57–79CrossRefGoogle Scholar
  130. Stewart AJ, Lees DR (1996) The colour/pattern polymorphism of Philaenus spumarius (L.) (Homoptera: Cercopidae) in England and Wales. Philos Trans R Soc B 351:69–89CrossRefGoogle Scholar
  131. Strona G, Carstens CJ, Beck PS (2017) Network analysis reveals why Xylella fastidiosa will persist in Europe. Sci Rep 7:71PubMedPubMedCentralCrossRefGoogle Scholar
  132. Svanberg I (2016) Cuckoo spit in Northern European folk biology. In: SLA. pp 117–121Google Scholar
  133. Thompson V (1973) Spittlebug polymorphic for warning coloration. Nature 242:126–128CrossRefGoogle Scholar
  134. Thompson V (1994) Spittlebug indicators of nitrogen-fixing plants. Ecol Entomol 19:391–398CrossRefGoogle Scholar
  135. Thompson V (2004) Associative nitrogen fixation, C4 photosynthesis, and the evolution of spittlebugs (Hemiptera: Cercopidae) as major pests of neotropical sugarcane and forage grasses. Bull Entomol Res 94:189–200PubMedCrossRefGoogle Scholar
  136. Tishechkin DYu (2013) Two new species of the genus Philaenus (Homoptera, Aphrophoridae) from Iran. Entomol Rev 1:73–76CrossRefGoogle Scholar
  137. Tubajika KM, Civerolo EL, Puterka GJ, Hashim JM, Luvisi DA (2007) The effects of kaolin, harpin, and imidacloprid on development of Pierce’s disease in grape. Crop Prot 26:92–99CrossRefGoogle Scholar
  138. Van Driesche RG, Prokopy RJ, Coli WM (1987) Potential for increased use of biological control agents in Massachusetts apple orchards. Res Bull Mass Agric Exp Stn 718:6–21Google Scholar
  139. Walker GP (2000) A beginner’s guide to electronic monitoring of homopteran probing behavior. In: Walker GP, Backus EA (eds) Principles and applications of electronic monitoring and other techniques in the study of homopteran feeding behavior. Thomas say publications in entomology, Entomological Society of America, Lanham, MD, pp 14–40Google Scholar
  140. Waloff N (1973) Dispersal by flight of leafhoppers (Auchenorrhyncha: Homoptera). J Appl Ecol 10:705–730CrossRefGoogle Scholar
  141. Watson R, Pritchard J, Malone M (2001) Direct measurement of sodium and potassium in the transpiration stream of salt-excluding and non-excluding varieties of wheat. J Exp Bot 52:1873–1881PubMedCrossRefGoogle Scholar
  142. Weaver CR (1951) The seasonal behaviour of meadow spittlebug and its relation to a control method. J Econ Entomol 44:350–353CrossRefGoogle Scholar
  143. Weaver CR, King DR (1954) Meadow spittlebug, Philaenus leucophthalmus (L.). Ohio Agric Exp Stat Bull 741:1–99Google Scholar
  144. West J, Lees DR (1988) Temperature and egg development in the spittlebug Philaenus spumarius (L.)(Homoptera: Aphrophoridae). The Entomologist 13:46–51Google Scholar
  145. Whittaker JB (1969) The biology of Pipunculidae (Diptera) parasitising some British Cercopidae (Homoptera). Physiol Entomol 44:17–24Google Scholar
  146. Whittaker JB (1970) Cercopid spittle as a microhabitat. Oikos 21:59–64CrossRefGoogle Scholar
  147. Whittaker JB (1973) Density regulation in a population of Philaenus spumarius (L.)(Homoptera: Cercopidae). J Anim Ecol 42:163–172CrossRefGoogle Scholar
  148. Wiegert RG (1964) Population energetics of meadow spittlebugs (Philaenus spumarius L.) as affected by migration and habitat. Ecol Monogr 34:217–241CrossRefGoogle Scholar
  149. Wilson MC, Shade RE (1967) Relative attractiveness of various luminescent colors to the cereal leaf beetle and the meadow spittle bug. J Econ Entomol 60:578–580CrossRefGoogle Scholar
  150. Wise MJ, Kieffer DL, Abrahamson WG (2006) Costs and benefits of gregarious feeding in the meadow spittlebug, Philaenus spumarius. Ecol Entomol 31:548–555CrossRefGoogle Scholar
  151. Witsack W (1973) Experimental and ecological investigations on forms of dormancy in homoptera-cicadina (Auchenorrhyncha). 2. On ovarian parapause and obligatory embryonic diapause in Philaenus spumarius (L.)(Aphrophoridae). Zoologische Jahrbücher: Abteilung für Systematik, Okologie und Geographie der Tiere 100:517–562Google Scholar
  152. Yurtsever S (2000) On the polymorphic meadow spittlebug, Philaenus spumarius (L.)(Homoptera: Cercopidae). Turk J Zool 24:447–460Google Scholar
  153. Zajac MA, Wilson MC (1984) The effects of nymphal feeding by the meadov spittlebug, Philaenus spumarius (L.) on strawberry yield and quality. Crop Prot 3:167–175CrossRefGoogle Scholar
  154. Zajac MA, Hall FR, Wilson MC (1989) Heat unit model for the development of meadow spittlebug (Homoptera Cercopidae) on strawberry. Environ Entomol 18:347–350CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Instituto de Ciencias Agrarias, Consejo Superior de Investigaciones Cientificas, ICA-CSICMadridSpain
  2. 2.Università di TorinoDipartimento di Scienze Agrarie, Forestali e AlimentariGrugliascoItaly
  3. 3.Istituto per la Protezione Sostenibile delle PianteConsiglio Nazionale delle RicercheTorinoItaly

Personalised recommendations