Advertisement

Journal of Pest Science

, Volume 91, Issue 1, pp 65–78 | Cite as

Effects of insecticides on sex pheromone communication and mating behavior in Trichogramma chilonis

  • Desen Wang
  • Lihua Lü
  • Yurong HeEmail author
Original Paper

Abstract

Trichogramma chilonis Ishii is an important natural enemy of several lepidopterous pests on crops. The effects of two common insecticides on sex pheromone communication and mating behavior in T. chilonis were evaluated in the laboratory. When only males were exposed to insecticide, beta-cypermethrin LC20 exposure induced significant decrease in sex pheromone perception by males and significant increase in males’ courtship and copulation frequency; beta-cypermethrin LC1 exposure caused significant decrease in males’ courtship and copulation frequency. Males exposed to spinosad LC20 exhibited significantly slower initiated courtship and significantly shorter total copulation duration, and the males exposed to spinosad LC1 exhibited significantly increased sex pheromone perception, compared with control. When both males and females were exposed to insecticide, significantly more courtship and copulation were conducted by treated pairs that survived insecticide (beta-cypermethrin or spinosad) LC20 than control pairs. Our study suggests that even the LC1 and LC20 of tested insecticides could affect the sex pheromone communication and mating behavior in T. chilonis.

Keywords

Semiochemical Sublethal effects Fertilization capacity Egg parasitoid Pesticide 

Notes

Acknowledgements

This research was supported by National Basic Research Program of China (973 project, 2013CB127604), Special Fund for Agro-scientific Research in the Public Interest of China (No. 201103021) and State Scholarship Fund of China.

Supplementary material

Supplementary material 1 (MP4 12254 kb)

References

  1. Abbes K, Biondi A, Kurtulus A, Ricupero M, Russo A, Siscaro G, Chermiti B, Zappalà L (2015) Combined non-target effects of insecticide and high temperature on the parasitoid Bracon nigricans. PLoS ONE 10:e0138411CrossRefPubMedPubMedCentralGoogle Scholar
  2. Anderbrant O, Hansson BS, Hallberg E, Geri C, Varama M, Hedenström E, Högberg HE, Fägerhag J, Edlund H, Wassgren AB, Bergström G, Löfqvist J (1995) Electrophysiological and morphological characteristics of pheromone receptors in male pine sawflies, Diprion pini (Hymenoptera: Diprionidae), and behavioural response to some compounds. J Insect Physiol 41:395–401CrossRefGoogle Scholar
  3. Andrade GS, Pratissoli D, Dalvi LP, Desneux N, dos Santos Junior HJG (2011) Performance of four Trichogramma species (Hymenoptera: Trichogrammatidae) as biocontrol agents of Heliothis virescens (Lepidoptera: Noctuidae) under various temperature regimes. J Pest Sci 84:313–320CrossRefGoogle Scholar
  4. Ballal CR, Srinivasan R, Jalali SK (2009) Evaluation of an endosulfan tolerant strain of Trichogramma chilonis on cotton. BioControl 54:723–732CrossRefGoogle Scholar
  5. Biondi A, Desneux N, Siscaro G, Zappalà L (2012a) Using organic-certified rather than synthetic pesticides may not be safer for biological control agents: selectivity and side effects of 14 pesticides on the predator Orius laevigatus. Chemosphere 87:803–812CrossRefPubMedGoogle Scholar
  6. Biondi A, Mommaerts V, Smagghe G, Viñuela E, Zappalà L, Desneux N (2012b) The non-target impact of spinosyns on beneficial arthropods. Pest Manag Sci 68:1523–1536CrossRefPubMedGoogle Scholar
  7. Biondi A, Zappalà L, Stark JD, Desneux N (2013) Do biopesticides affect the demographic traits of a parasitoid wasp and its biocontrol services through sublethal effects? PLoS ONE 8:e76548CrossRefPubMedPubMedCentralGoogle Scholar
  8. Biondi A, Campolo O, Desneux N, Siscaro G, Palmeri V, Zappalà L (2015) Life stage-dependent susceptibility of Aphytis melinus DeBach (Hymenoptera: Aphelinidae) to two pesticides commonly used in citrus orchards. Chemosphere 128:142–147CrossRefPubMedGoogle Scholar
  9. Bourdais D, Vernon P, Krespi L, van Baaren J (2012) Behavioural consequences of cold exposure on males and females of Aphidius rhopalosiphi De Stephani Perez (Hymenoptera: Braconidae). BioControl 57:349–360CrossRefGoogle Scholar
  10. Brown RA (1989) Pesticides and non-target terrestrial invertebrates: an industrial approach. In: Jepson PC (ed) Pesticides and non-target invertebrates. Intercept Ltd, Wimborne, pp 19–42Google Scholar
  11. Chailleux A, Desneux N, Seguret J, Do Thi Khanh H, Maignet P, Tabone E (2012) Assessing European egg parasitoids as a mean of controlling the invasive South American tomato pinworm Tuta absoluta. PLoS ONE 7:e48068CrossRefPubMedPubMedCentralGoogle Scholar
  12. Chailleux A, Biondi A, Han P, Tabone E, Desneux N (2013) Suitability of the pest-plant system Tuta absoluta (Lepidoptera: Gelechiidae)-tomato for Trichogramma (Hymenoptera: Trichogrammatidae) parasitoids and insights for biological control. J Econ Entomol 106:2310–2321CrossRefPubMedGoogle Scholar
  13. Chang SC, Hu NT, Hsin CY, Sun CN (2001) Characterization of differences between two Trichogramma wasps by molecular markers. Biol Control 21:75–78CrossRefGoogle Scholar
  14. Delpuech JM, Froment B, Fouillet P, Pompanon F, Janillon S, Bouletreau M (1998a) Inhibition of sex pheromone communications of Trichogramma brassicae (Hymenoptera) by the insecticide chlorpyrifos. Environ Toxicol Chem 17:1107–1113CrossRefGoogle Scholar
  15. Delpuech JM, Gareau E, Terrier O, Fouillet P (1998b) Sublethal effects of the insecticide chlorpyrifos on the sex pheromonal communication of Trichogramma brassicae. Chemosphere 36:1775–1785CrossRefGoogle Scholar
  16. Delpuech JM, Legallet B, Terrier O, Fouillet P (1999) Modifications of the sex pheromonal communication of Trichogramma brassicae by a sublethal dose of deltamethrin. Chemosphere 38:729–739CrossRefPubMedGoogle Scholar
  17. Delpuech JM, Legallet B, Fouillet P (2001) Partial compensation of the sublethal effect of deltamethrin on the sex pheromonal communication of Trichogramma brassicae. Chemosphere 42:985–991CrossRefPubMedGoogle Scholar
  18. Delpuech JM, Dupont C, Allemand R (2012) Effects of deltamethrin on the specific discrimination of sex pheromones in two sympatric Trichogramma species. Ecotox Environ Safe 84:32–38CrossRefGoogle Scholar
  19. Desneux N, Pham-Delègue MH, Kaiser L (2004) Effects of sub-lethal and lethal doses of lambda-cyhalothrin on oviposition experience and host-searching behaviour of a parasitic wasp, Aphidius ervi. Pest Manag Sci 60:381–389CrossRefPubMedGoogle Scholar
  20. Desneux N, Fauvergue X, Dechaume-Moncharmont FX, Kerhoas L, Ballanger Y, Kaiser L (2005) Diaeretiella rapae limits Myzus persicae populations after applications of deltamethrin in oilseed rape. J Econ Entomol 98:9–17CrossRefPubMedGoogle Scholar
  21. Desneux N, Denoyelle R, Kaiser L (2006a) A multi-step bioassay to assess the effect of the deltamethrin on the parasitic wasp Aphidius ervi. Chemosphere 65:1697–1706CrossRefPubMedGoogle Scholar
  22. Desneux N, Ramirez-Romero R, Kaiser L (2006b) Multistep bioassay to predict recolonization potential of emerging parasitoids after a pesticide treatment. Environ Toxicol Chem 25:2675–2682CrossRefPubMedGoogle Scholar
  23. Desneux N, Decourtye A, Delpuech JM (2007) The sublethal effects of pesticides on beneficial arthropods. Annu Rev Entomol 52:81–106CrossRefPubMedGoogle Scholar
  24. Doyon J, Boivin G (2006) Impact of the timing of male emergence on mating capacity of males in Trichogramma evanescens Westwood. BioControl 51:703–713CrossRefGoogle Scholar
  25. Dupont C, Allemand R, Delpuech JM (2010) Induction by chlorpyrifos, of the confusion of males in discriminating female sexual pheromones used for mate finding by two sympatric Trichogramma species (Hymenoptera: Trichogrammatidae). Environ Entomol 39:535–544CrossRefPubMedGoogle Scholar
  26. Fan XJ, Li Y, Li Y, Li LS, Zhang CF (2010) Research progress of insect sex pheromone. J Anhui Agric Sci 38:4636–4638Google Scholar
  27. Finney DJ (1971) Probit analysis. Cambridge University, CambridgeGoogle Scholar
  28. Gu D, Wright DJ, Waage JK (1995) Effects of sublethal doses of insecticides on the mating behaviour of male parasitoid, Diadegma eucerophaga. J South China Agric Univ 16:55–59Google Scholar
  29. Gu XZ, Zhang GY, Chen L, Dai RL, Yu YC (2008) Persistence and dissipation of synthetic pyrethroid pesticides in red soils from the Yangtze River Delta area. Environ Geochem Health 30:67–77CrossRefPubMedGoogle Scholar
  30. Guedes RNC, Smagghe G, Stark JD, Desneux N (2016) Pesticide-induced stress in arthropod pests for optimized integrated pest management programs. Annu Rev Entomol 61:43–62CrossRefPubMedGoogle Scholar
  31. Hansson BS (1995) Olfaction in lepidoptera. Experientia 51:1003–1027CrossRefGoogle Scholar
  32. Hansson BS, Almaas TJ, Anton S (1995) Chemical communication in heliothine moths V. Antennal lobe projection patterns of pheromone-detecting olfactory receptor neurons in the male Heliothis virescens (Lepidoptera: noctuidae). J Comp Physiol A 177:535–543CrossRefGoogle Scholar
  33. Hardy ICW (1994) Sex ratio and mating structure in the parasitoid Hymenoptera. Oikos 69:3–20CrossRefGoogle Scholar
  34. He Y, Pang X (2000) Species and parasitism of Trichogramma on the diamond back moth, Plutella xylostella in Shenzhen, China. Nat Enemies Insects 22:1–5Google Scholar
  35. He Y, Lü L, Pang X (2001) Selection of effective species of Trichogramma egg parasitoids of diamondback moth: I. Laboratory evaluation on the parasitizating capacity of several Trichogramma and Trichogrammatoidea species. Chin J Biol Control 17:6–9Google Scholar
  36. He Y, Chen K, Pang X (2002) Egg parasitoids of Plutella xylostella (L.) in South China. In: Kirk AA, Bordat D (eds) Improving biocontrol of Plutella xylostella: proceedings of the international symposium. CIRAD, Montpellier, pp 267–273Google Scholar
  37. Heimpel GE, de Boer JG (2008) Sex determination in the Hymenoptera. Annu Rev Entomol 53:209–230CrossRefPubMedGoogle Scholar
  38. Huang KC, Zeng XN, Li ZY (2010) Insecticides-induced hormesis on insects. Asian J Ecotoxicol 5:26–31Google Scholar
  39. Hussain D, Ali H, Qasim M, Khan J (2015) Insecticidal susceptibility and effectiveness of Trichogramma chilonis as parasitoids of tomato fruit borer, Helicoverpa armigera. Pak J Zool 47:1427–1432Google Scholar
  40. Jacob S, Boivin G (2004) Insemination potential of male Trichogramma evanescens. Entomol Exp Appl 113:181–186CrossRefGoogle Scholar
  41. Jin T, Zeng L, Lin Y, Lu Y, Liang G (2011) Insecticide resistance of the oriental fruit fly, Bactrocera dorsalis (Hendel) (Diptera: Tephritidae), in mainland China. Pest Manag Sci 67:370–376CrossRefPubMedGoogle Scholar
  42. Jin T, Lin YY, Jin QA, Wen HB, Peng ZQ (2015) Population susceptibility to insecticides and the development of resistance in Bactrocera cucurbitae (Diptera: Tephritidae). J Econ Entomol 109:837–846CrossRefGoogle Scholar
  43. King BH, Saporito KB, Ellison JH, Bratzke RM (2005) Unattractiveness of mated females to males in the parasitoid wasp Spalangia endius. Behav Ecol Sociobiol 57:350–356CrossRefGoogle Scholar
  44. Ko K, Liu YD, Hou ML, Babendreier D, Zhang F, Song K (2015) Toxicity of insecticides targeting rice planthoppers to adult and immature stages of Trichogramma chilonis (Hymenoptera: Trichogrammatidae). J Econ Entomol 108:69–76CrossRefPubMedGoogle Scholar
  45. Liang P, Tian YA, Biondi A, Desneux N, Gao XW (2012) Short-term and transgenerational effects of the neonicotinoid nitenpyram on susceptibility to insecticides in two whitefly species. Ecotoxicology 21:1889–1898CrossRefPubMedGoogle Scholar
  46. Lu Y, Wu K, Jiang Y, Guo Y, Desneux N (2012) Widespread adoption of Bt cotton and insecticide decrease promotes biocontrol services. Nature 487:362–365CrossRefPubMedGoogle Scholar
  47. Lund HO (1938) Studies on longevity and productivity in Trichogramma evanescens. J Agric Res 56:421–439Google Scholar
  48. Martel V, Doyon J, Boivin G (2010) Partial local mate competition in the wasp Trichogramma euproctidis: the role of emergence sex ratio on female mating behaviour. Ecol Entomol 35:698–703CrossRefGoogle Scholar
  49. McClure M, Whistlecraft J, McNeil JN (2007) Courtship behavior in relation to the female sex pheromone in the parasitoid, Aphidius ervi (Hymenoptera: Braconidae). J Chem Ecol 33:1946–1959CrossRefPubMedGoogle Scholar
  50. Michalko R, Košulič O (2015) Temperature-dependent effect of two neurotoxic insecticides on predatory potential of Philodromus spiders. J Pest Sci 89:517–527CrossRefGoogle Scholar
  51. Monti L, Lalanne-Cassou B, Lucas P, Malosse C, Silvain JF (1995) Differences in sex pheromone communication systems of closely related species: Spodoptera latifascia (Walker) and S. descoinsi Lalanne-Cassou and Silvain (Lepidoptera: Noctuidae). J Chem Ecol 21:641–660CrossRefPubMedGoogle Scholar
  52. Pasquet A, Tupinier N, Mazzia C, Capowiez Y (2016) Exposure to spinosad affects orb-web spider (Agalenatea redii) survival, web construction and prey capture under laboratory conditions. J Pest Sci 89:507–515CrossRefGoogle Scholar
  53. Pizzol J, Pintureau B, Khoualdia O, Desneux N (2010) Temperature-dependent differences in biological traits between two strains of Trichogramma cacoeciae (Hymenoptera: Trichogrammatidae). J Pest Sci 83:447–452CrossRefGoogle Scholar
  54. Pompanon F, Fouillet P, Boulétreau M (1995) Emergence rhythms and protandry in relation to daily patterns of locomotor activity in Trichogramma species. Evol Ecol 9:467–477CrossRefGoogle Scholar
  55. Prasifka JR, Lopez MD, Hellmich RL, Prasifka PL (2008) Effects of insecticide exposure on movement and population size estimates of predatory ground beetles (Coleoptera: Carabidae). Pest Manag Sci 64:30–36CrossRefPubMedGoogle Scholar
  56. Preetha G, Stanley J, Suresh S, Kuttalam S, Samiyappan R (2009) Toxicity of selected insecticides to Trichogramma chilonis: assessing their safety in the rice ecosystem. Phytoparasitica 37:209–215CrossRefGoogle Scholar
  57. Sántis EL, Hernández LA, Martínez AM, Campos J, Figueroa JI, Lobit P, Chavarrieta JM, Viñuela E, Smagghe G, Pineda S (2012) Long-term foliar persistence and efficacy of spinosad against beet armyworm under greenhouse conditions. Pest Manag Sci 68:914–921CrossRefPubMedGoogle Scholar
  58. Shan C, Ma S, Wang M, Gao G (2012) Evaluation of insecticides against the western flower thrips, Frankliniella occidentals (Thysanoptera: Thripidae), in the laboratory. Fla Entomol 95:454–460CrossRefGoogle Scholar
  59. Sharma A, Srivastava A, Ram B, Srivastava PC (2007) Dissipation behaviour of spinosad insecticide in soil, cabbage and cauliflower under subtropical conditions. Pest Manag Sci 63:1141–1145CrossRefPubMedGoogle Scholar
  60. Smith SM (1996) Biological control with Trichogramma: advances, successes and potential of their use. Annu Rev Entomol 41:375–406CrossRefPubMedGoogle Scholar
  61. Sparks TC, Crouse GD, Durst G (2001) Natural products as insecticides: the biology, biochemistry and quantitative structure-activity relationships of spinosyns and spinosoids. Pest Manag Sci 57:896–905CrossRefPubMedGoogle Scholar
  62. Tabarean IV, Narahashi T (2001) Kinetics of modulation of tetrodotoxin-sensitive and tetrodotoxin-resistant sodium channels by tetramethrin and deltamethrin. J Pharmacol Exp Ther 299:988–997PubMedGoogle Scholar
  63. Tabone E, Bardon C, Desneux N, Wajnberg E (2010) Parasitism of different Trichogramma species and strains on Plutella xylostella L. on greenhouse cauliflower. J Pest Sci 83:251–256CrossRefGoogle Scholar
  64. Wang DS, Pan F, He YR, Guo XL, Chen Q (2011) Sublethal effects of eleven insecticides of different categories on reproduction of Trichogrammatoidea bactrae Nagaraja (Hymenoptera: Trichogrammatidae). Acta Entomol Sin 54:56–63Google Scholar
  65. Wang DS, He YR, Guo XL, Luo YL (2012) Acute toxicities and sublethal effects of some conventional insecticides on Trichogramma chilonis (Hymenoptera: Trichogrammatidae). J Econ Entomol 105:1157–1163CrossRefPubMedGoogle Scholar
  66. Wang Y, Wu C, Cang T, Yang L, Yu W, Zhao X, Wang Q, Cai L (2014) Toxicity risk of insecticides to the insect egg parasitoid Trichogramma evanescens Westwood (Hymenoptera: Trichogrammatidae). Pest Manag Sci 70:398–404CrossRefPubMedGoogle Scholar
  67. Wang D, Lü L, He Y, Shi Q, Tu C, Gu J (2016a) Mate choice and host discrimination behavior of the parasitoid Trichogramma chilonis. Bull Entomol Res 106:530–537CrossRefPubMedGoogle Scholar
  68. Wang D, Lü L, He Y, Shi Q, Wang G (2016b) Effects of insecticides on oviposition and host discrimination behavior in Trichogramma chilonis (Hymenoptera: Trichogrammatidae). J Econ Entomol 109:2380–2387CrossRefPubMedGoogle Scholar
  69. Wang D, Lü L, He Y (2017) Effects of two conventional insecticides on male-specific sex pheromone discrimination and mate choice in Trichogramma chilonis (Hymenoptera: Trichogrammatidae). Environ Entomol. doi: 10.1093/ee/nvw172 Google Scholar
  70. Williams T, Valle J, Vinuela E (2003) Is the naturally derived insecticide Spinosad (R) compatible with insect natural enemies? Biocontrol Sci Technol 13:459–475CrossRefGoogle Scholar
  71. Xia Y, Lu Y, Shen J, Gao X, Qiu H, Li J (2014) Resistance monitoring for eight insecticides in Plutella xylostella in central China. Crop Prot 63:131–137CrossRefGoogle Scholar
  72. Xiao D, Zhao J, Guo X, Chen H, Qu M, Zhai W, Desneux N, Biondi A, Zhang F, Wang S (2016) Sublethal effects of imidacloprid on the predatory seven-spot ladybird beetle Coccinella septempunctata. Ecotoxicology 25:1782–1793CrossRefPubMedGoogle Scholar
  73. Zheng X, Ren X, Su J (2011) Insecticide susceptibility of Cnaphalocrocis medinalis (Lepidoptera: Pyralidae) in China. J Econ Entomol 104:653–658CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong ProvinceCollege of Agriculture, South China Agricultural UniversityGuangzhouChina
  2. 2.Plant Protection Research InstituteGuangdong Academy of Agricultural SciencesGuangzhouChina

Personalised recommendations