Advertisement

Journal of Pest Science

, Volume 90, Issue 3, pp 873–885 | Cite as

Synthetic blend of larval frass volatiles repel oviposition in the invasive box tree moth, Cydalima perspectalis

  • Béla P. Molnár
  • Zoltán Tóth
  • Zsolt Kárpáti
Original Paper

Abstract

Insects find their oviposition sites using visual, contact and olfactory cues. Volatile stimuli emitted by an intact or herbivore-occupied host plant, non-host plants or the herbivore itself can all influence the final decision of females concerning where to lay eggs. Volatile substances surrounding larval excreted pellets, i.e., frass of the invasive box tree moth (Cydalima perspectalis Walker) were collected, and the physiological activity was investigated by coupled gas chromatographic–electroantennographic detection. Based on structural elucidation, two aromatic derivates and one terpene alcohol were identified to be physiologically active on the antennae of the adults: guaiacol, (±)-linalool and veratrol. For all compounds, antennal responses were found to be dose dependent with EAG amplitudes being the highest at the highest dose levels. Females were also more sensitive to all three compounds compared to males. Single sensillum recordings on mated female antennae revealed that these frass compounds triggered 22% of the tested olfactory sensory neurons housed in trichoid sensilla. Behavioral bioassays indicated that the blend of these compounds had an oviposition-repellent effect on conspecific females: individuals laid significantly fewer eggs on boxwood plants equipped with dispensers loaded with the synthetic blend compared to those treated with natural frass or the control plants. This difference likely originated from the measured rapid changes in the volatile profile of larval excrement when exposed to the air at room temperature. Our findings have the potential to unravel the complex ecology of this invasive moth species characterized by rapid range expansion and extensive damage in Europe.

Keywords

Oviposition preference Frass volatiles Electrophysiology Single sensillum recording Invasive pest Crambidae 

Notes

Acknowledgements

We are grateful to Pál Vági (Department of Plant Anatomy, Faculty of Science, Eötvös Loránd University, Budapest, Hungary) for his contribution in taking scanning electron microscopy images and to Kistie B. Brunsell for the linguistic corrections.

Funding

This study was supported by the Hungarian Scientific Research Fund (OTKA, PD1041310), the Marie Curie Career Integration Grant (PCIG12-GA-2012-333980) and the János Bolyai Research Scholarship of the Hungarian Academy of Sciences to ZK. During the study, ZT was supported by the ‘Lendület’ programme of the Hungarian Academy of Sciences (MTA, LP2012-24/2012) and a Hungarian Scientific Research Fund grant (OTKA, PD108938) and Postdoctoral Research Program of HAS (Grant No. SZ-029/2013).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Research involving human and animals

The invertebrate insect species (box tree moth, C. perspectalis) used in the present study has a horticultural pest status and is not protected in Hungary. Therefore, individuals can be freely collected and used in laboratory experiments without permit or approval from the institutional ethics committee or national authorities under Hungarian law (348/2006, paragraph 10/3). Collecting sites were either owned by the research institute (Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest) or were publicly accessible; therefore, no permit was needed to access them. During experimentation, we avoided causing any unnecessary harm, suffering or distress to the study subjects. The insect collection was exclusively focused on the experimental species and did not involve endangered or protected species.

Informed consent

Informed consent does not apply to these studies.

Supplementary material

10340_2017_837_MOESM1_ESM.pdf (1 mb)
Supplementary material 1 (PDF 1028 kb)
10340_2017_837_MOESM2_ESM.pdf (80 kb)
Supplementary material 2 (PDF 79 kb)
10340_2017_837_MOESM3_ESM.pdf (1.2 mb)
Supplementary material 3 (PDF 1195 kb)

References

  1. Agelopoulos NG, Dicke M, Posthumus MA (1995) Role of volatile inforchemicals emitted by feces of larvae in host-searching behavior of parasitoid Cotesia rubecula (Hymenoptera: Braconidae): a behavioral and chemical study. J Chem Ecol 21:1789–1811. doi: 10.1007/BF02033677 CrossRefPubMedGoogle Scholar
  2. Anderson P (2002) Oviposition pheromones in herbivorous and carnivorous insects. In: Hilker M, Meiners T (eds) Chemoecology of insect eggs and egg deposition. Blackwell Verlag, Berlin, pp 235–256Google Scholar
  3. Anderson P, Löfqvist J (1996) Oviposition deterrents from potato, wheat germ, larval frass, and artificial diet for Agrotis segetum (Lepidoptera: Noctuidae). Environ Entomol 25:6CrossRefGoogle Scholar
  4. Anderson P, Hilker M, Klein B, Schildknecht H (1993) Oviposition deterring components in larval frass of Spodoptera littoralis (Boisd.) (Lepidoptera : Noctuidae): a behavioural and electrophysiological. Evaluation 39:129–137Google Scholar
  5. Anderson P, Hansson BS, Löfqvist J (1995) Plant-odour-specific receptor neurons on the antennae of female and male Spodoptera littoralis. Physiol Entomol 20:189–198CrossRefGoogle Scholar
  6. Andersson MN, Larsson MC, Schlyter F (2009) Specificity and redundancy in the olfactory system of the bark beetle Ips typographus: single-cell responses to ecologically relevant odors. J Insect Physiol 55:556–567. doi: 10.1016/j.jinsphys.2009.01.018 CrossRefPubMedGoogle Scholar
  7. Andersson MN, Schlyter F, Hill SR, Dekker T (2012) What reaches the antenna? How to calibrate odor flux and ligand-receptor affinities. Chem Senses 37:403–420. doi: 10.1093/chemse/bjs009 CrossRefPubMedGoogle Scholar
  8. Baldwin IT, Kessler A, Halitschke R (2002) Volatile signaling in plant—plant—herbivore interactions: what is real ? Curr Opin Biotechnol 5:1–4. doi: 10.1016/S-1369-5266(02)00263-7 Google Scholar
  9. Bengtsson JM, Wolde-Hawariat Y, Khbaish H et al (2009) Field attractants for Pachnoda interrupta selected by means of GC-EAD and single sensillum screening. J Chem Ecol 35:1063–1076. doi: 10.1007/s10886-009-9684-7 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Bernays EA (2001) Neural limitations in phytophagous insects: implications for diet breadth and evolution of host affiliation. Annu Rev Entomol 46:703–727. doi: 10.1146/annurev.ento.46.1.703 CrossRefPubMedGoogle Scholar
  11. Binyameen M, Anderson P, Ignell R et al (2014) Identification of plant semiochemicals and characterization of new olfactory sensory neuron types in a polyphagous pest moth, Spodoptera littoralis. Chem Senses 39:719–733. doi: 10.1093/chemse/bju046 CrossRefPubMedGoogle Scholar
  12. Borg-Karlson A-K, Nordlander G, Mudalige A et al (2006) Antifeedants in the feces of the pine weevil Hylobius abietis: identification and biological activity. J Chem Ecol 32:943–957. doi: 10.1007/s10886-006-9050-y CrossRefPubMedGoogle Scholar
  13. Bruce TJA, Wadhams LJ, Woodcock CM (2005) Insect host location: a volatile situation. Trends Plant Sci 10:269–274. doi: 10.1016/j.tplants.2005.04.003 CrossRefPubMedGoogle Scholar
  14. CABI (2016) Cydalima perspectalis. In: Invasive species compendium. http://www.cabi.org/isc/datasheet/118433. Accessed 1 Jan 2016
  15. Cardé RT, Willis MA (2008) Navigational strategies used by insects to find distant, wind-borne sources of odor. J Chem Ecol 34:854–866. doi: 10.1007/s10886-008-9484-5 CrossRefPubMedGoogle Scholar
  16. Crowell AL, Williams DC, Davis EM, Wildung MR, Croteau R (2002) Molecular cloning and characterization of a new linalool synthase. Arch Biochem Biophys 405:112–121CrossRefPubMedGoogle Scholar
  17. Courtney SP, Kibota TT (1990) Mother doesn’t know best: selection of hosts by ovipositig insects. In: Bernays EA (ed) Insect-plant interactions. CRC Press, Boca Raton, FL, pp 161–188Google Scholar
  18. de Bruyne M, Baker TC (2008) Odor detection in insects: volatile codes. J Chem Ecol 34:882–897. doi: 10.1007/s10886-008-9485-4 CrossRefPubMedGoogle Scholar
  19. Dillon RJ, Vennard CT, Charnley AK (2000) Exploitation of gut bacteria in the locust. Nature 403:851. doi: 10.1038/35002669 CrossRefPubMedGoogle Scholar
  20. Dodson HEM (1993) Floral volatiles in insect biology. In: Bernays EA (ed) Insect-plant interactions. CRC Press, Boca Raton, pp 47–81Google Scholar
  21. Fuzeau-Braesch S, Genin E, Jullien R et al (1988) Composition and role of volatile substances in atmosphere surrounding two gregarious locusts, Locusta migratoria and Schistocerca gregaria. J Chem Ecol 14:1023–1033. doi: 10.1007/BF01018790 CrossRefPubMedGoogle Scholar
  22. Hansson BS, Ochieng’ SA, Grosmaitre X et al (1996) Physiological responses and central nervous projections of antennal olfactory receptor neurons in the adult desert locust, Schistocerca gregaria (Orthoptera: Acrididae). J Comp Physiol A. doi: 10.1007/BF00222783 Google Scholar
  23. Hebets E, Chapman R (2000) Electrophysiological studies of olfaction in the whip spider Phrynus parvulus (Arachnida, Amblypygi). J Insect Physiol 46:1441–1448CrossRefPubMedGoogle Scholar
  24. Hilker M, Klein B (1989) Investigation of oviposition deterrent in larval frass of Spodoptera littoralis (Boisd.). J Chem Ecol 15:929–938CrossRefPubMedGoogle Scholar
  25. Hurter J, Boller EF, Städler E et al (1987) Oviposition-deterring pheromone in Rhagoletis cerasi L.: purification and determination of the chemical constitution. Experientia 43:157–164. doi: 10.1007/BF01942834 CrossRefGoogle Scholar
  26. Ignell R, Hansson B (2004) Insect olfactory neuroethology—an electrophysiological perspective. In: Thomas A. Christensen (ed) Methods in insect sensory neuroscience. CRC Press, New York, pp 319–347Google Scholar
  27. Ignell R, Anton S, Hansson BS (1998) Central nervous processing of behaviorally relevant odours in solitary and gregarious fifth instar locusts, Schistocerca gregaria. J Comp Physiol A Sens Neural Behav Physiol 183:453–465. doi: 10.1007/s003590050271 CrossRefGoogle Scholar
  28. Jaenike J (1978) On optimal oviposition behavior in phytophagous insects. Theor Popul Biol 14(3):350–356. doi: 10.1016/0040-5809(78)90012-6 CrossRefPubMedGoogle Scholar
  29. Kárpáti Z, Tasin M, Cardé RT et al (2013) Early quality assessment lessens pheromone specificity in a moth. PNAS 110:7377–7382. doi: 10.1073/pnas.1216145110 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Kenis M, Nacambo S, Leuthardt FLG et al (2013) The box tree moth, Cydalima perspectalis, in Europe: horticultural pest or environmental disaster? Aliens Invasive Species Bull 33:38–41Google Scholar
  31. Kessler A, Baldwin IT (2001) Defensive function of herbivore-induced plant volatile emissions in nature. Science 291:2141–2144. doi: 10.1126/science.291.5511.2141 CrossRefPubMedGoogle Scholar
  32. Klein B, Schildknecht H, Hilker M, Bombosch S (1990) Oviposition-deterring compounds from larval frass of Spodoptera littoralis (Boisd.). Zeitschrift für NaturforschungSection C Biosci 45:895–901Google Scholar
  33. Klijnstra JW, Roessingh P (1986) Perception of the oviposition deterring pheromone by tarsal and abdominal contact chemoreceptors in Pieris brassicae. Entomol Exp Appl 40:71–79. doi: 10.1111/j.1570-7458.1986.tb02157.x CrossRefGoogle Scholar
  34. Leuthardt FLG, Baur B (2013) Oviposition preference and larval development of the invasive moth Cydalima perspectalis on five European box-tree varieties. J Appl Entomol 137:437–444. doi: 10.1111/jen.12013 CrossRefGoogle Scholar
  35. Leuthardt FLG, Glauser G, Baur B (2013) Composition of alkaloids in different box tree varieties and their uptake by the box tree moth Cydalima perspectalis. Chemoecology 23:203–212. doi: 10.1007/s00049-013-0134-1 CrossRefGoogle Scholar
  36. Molnár BP, Tóth Z, Fejes-Tóth A et al (2015) Electrophysiologically-active maize volatiles attract gravid female European Corn Borer, Ostrinia nubilalis. J Chem Ecol. doi: 10.1007/s10886-015-0640-4 PubMedGoogle Scholar
  37. Nacambo S, Leuthardt FLG, Wan H et al (2014) Development characteristics of the box-tree moth Cydalima perspectalis and its potential distribution in Europe. J Appl Entomol 138:14–26. doi: 10.1111/jen.12078 CrossRefGoogle Scholar
  38. Obeng-Ofori D, Torto B, Njagi PG et al (1994) Fecal volatiles as part of the aggregation pheromone complex of the desert locust, Schistocerca gregaria (Forskal) (Orthoptera: Acrididae). J Chem Ecol 20:2077–2087. doi: 10.1007/BF02066244 CrossRefPubMedGoogle Scholar
  39. Paré PW, Tumlinson JH (1997) De novo biosynthesis of volatiles lnduced by lnsect herbivory in cotton plants. Plant Physiol 11:1161–1167CrossRefGoogle Scholar
  40. Pellmyr O (1986) Three pollination morphs in Cimicifuga simplex; incipient speciation due to inferiority in competition. Oecologia 68:304–307CrossRefPubMedGoogle Scholar
  41. Pichersky E, Raguso RA, Lewinsohn E, Croteau R (1994) Floral scent production in Clarkia (Onagraceae) (I. Localization and developmental modulation of monoterpene emission and linalool synthase activity). Plant Physiol 106:1533–1540CrossRefPubMedPubMedCentralGoogle Scholar
  42. Pinheiro J, Bates D, DebRoy S et al (2015) nlme: Linear and nonlinear mixed effects models. R package version 3.1-121Google Scholar
  43. Prokopy RJ, Spatcher PJ (1977) Location of receptors for oviposition-deterring pheromone in Rhagoletis pomonella flies. Ann Entomol Soc Am 70:960–962. doi: 10.1093/aesa/70.6.960 CrossRefGoogle Scholar
  44. R Core Team (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/
  45. Ramachandran R, Norris DM, Phillips JK, Phillips TW (1991) Volatiles mediating plant-herbivore-natural enemy interactions: soybean looper frass volatiles, 3-octanone and guaiacol, as kairomones for the parasitoid Microplitis demolitor. J Agric Food Chem 39:2310–2317. doi: 10.1021/jf00012a044 CrossRefGoogle Scholar
  46. Reinecke A, Hilker M (2014) Annual plant reviews. Wiley, ChichesterGoogle Scholar
  47. Reinhold J, Schumacher J (2013) Der Buchsbaum-Zünsler (Cydalima perspectalis) im Grenzach-Wyhlener Buchswald – Invasionschronik und Monitoringergebnisse. Gesunde Pflanz 65:1–6. doi: 10.1007/s10343-013-0292-7 CrossRefGoogle Scholar
  48. Reisenman CE, Riffell JA, Bernays EA, Hildebrand JG (2010) Antagonistic effects of floral scent in an insect-plant interaction. Proc R Soc B 277:2371–2379. doi: 10.1098/rspb.2010.0163 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Reisenman CE, Riffell JA, Duffy K et al (2013) Species-specific effects of herbivory on the oviposition behavior of the moth Manduca sexta. J Chem Ecol 39:76–89. doi: 10.1007/s10886-012-0228-1 CrossRefPubMedGoogle Scholar
  50. Renwick JAA (1989) Chemical ecology of oviposition in phytophagous insects. Experientia 45:223–228. doi: 10.1007/BF01951807 CrossRefGoogle Scholar
  51. Renwick JAA, Chew FS (1994) Oviposition behavior in Lepidoptera. Annu Rev Entomol 39:377–400. doi: 10.1146/annurev.en.39.010194.002113 CrossRefGoogle Scholar
  52. Renwick JAA, Radke CD (1980) An oviposition deterrent associated with frass from feeding larvae of the cabbage looper, Trichoplusia ni (Lepidoptera: Nocturidae). Environ Entomol 9:318–320CrossRefGoogle Scholar
  53. Renwick JAA, Radke CD (1981) Host plant constituents as oviposition deterrents for the Cabbage Looper, Trichoplusia ni. Entomol Exp Appl 30:201–204. doi: 10.1111/j.1570-7458.1981.tb03099.x CrossRefGoogle Scholar
  54. Rothschild M, Schoonhoven LM (1977) Assessment of egg load by Pieris brassicae (Lepidoptera: Pieridae). Nature 266:352–355. doi: 10.1038/266352a0 CrossRefGoogle Scholar
  55. Saïd I, Tauban D, Renou M et al (2003) Structure and function of the antennal sensilla of the palm weevil Rhynchophorus palmarum (Coleoptera, Curculionidae). J Insect Physiol 49:857–872. doi: 10.1016/S0022-1910(03)00137-9 CrossRefPubMedGoogle Scholar
  56. Salvesen PH, Kanz B, Moe D (2009) Historical cultivars of Buxus sempervirens L. revealed in a preserved 17th century garden by biometry and amplified fragment length polymorphism (AFLP). Eur J Hortic Sci 74:130–136Google Scholar
  57. Schöni R, Städler E, Renwick JAA, Radke CD (1987) Host and non-host plant chemical influencing the oviposition behavior of several herbivorous insects. In: Labeyrie V, Fabres G, Lachaise D (eds) Proc 6th Int Symp Insect-Plant relation. Dordrecht, pp 31–36Google Scholar
  58. Schoonhoven LM, van Loon JJA, Dicke M (2005) Insect-plant biology: paperback. Oxford University Press, LondonGoogle Scholar
  59. She D-S, Feng F-J (2006) Bionomics and control of Diaphania perspectalis (Walker). J Zhejiang Univ Sci Technol 26:47–51Google Scholar
  60. Stensmyr MC, Dweck HKM, Farhan A et al (2012) A conserved dedicated olfactory circuit for detecting harmful microbes in Drosophila. Cell 151:1345–1357. doi: 10.1016/j.cell.2012.09.046 CrossRefPubMedGoogle Scholar
  61. Thaler JS (1999) Jasmonate-inducible plant defences cause increased parasitism of herbivores. Nature 399:686–688. doi: 10.1038/21420 CrossRefGoogle Scholar
  62. Thibout E, Guillot JF, Auger J (1993) Microorganisms are involved in the production of volatile kairomones affecting the host seeking behaviour of Diadromus pulchellus, a parasitoid of Acrolepiopsis assectella. Physiol Entomol 18:176–182. doi: 10.1111/j.1365-3032.1993.tb00465.x CrossRefGoogle Scholar
  63. Todd IL, Baker TC (1993) Response of single antennal neurons of female cabbage loopers to behaviorally active attractants. Naturwissenschaften 80:183–186. doi: 10.1007/BF01226381 CrossRefGoogle Scholar
  64. Turlings TC, Tumlinson JH (1992) Systemic release of chemical signals by herbivore-injured corn. Proc Natl Acad Sci USA 89:8399–8402CrossRefPubMedPubMedCentralGoogle Scholar
  65. Turlings TC, Tumlinson JH, Lewis WJ (1990) Exploitation of herbivore-induced plant odors by host-seeking parasitic wasps. Science 250:1251–1253. doi: 10.1126/science.250.4985.1251 CrossRefPubMedGoogle Scholar
  66. Ulland S (2006) Discrimination between Enantiomers of Linalool by Olfactory Receptor Neurons in the Cabbage Moth Mamestra brassicae (L.). Chem Senses 31:325–334. doi: 10.1093/chemse/bjj036 CrossRefPubMedGoogle Scholar
  67. Valladares G, Lawton JH (1991) Host-Plant Selection in the Holly Leaf-Miner: Does Mother Know Best? J Anim Ecol 60:227. doi:  10.2307/5456 CrossRefGoogle Scholar
  68. Vinson SB (1976) Host selection by insect parasitoids. Annu Rev Entomol 21:109–133. doi: 10.1146/annurev.en.21.010176.000545 CrossRefGoogle Scholar
  69. Wan H, Haye T, Kenis M et al (2014) Biology and natural enemies of Cydalima perspectalis in Asia: Is there biological control potential in Europe? J Appl Entomol 138:715–722. doi: 10.1111/jen.12132 CrossRefGoogle Scholar
  70. Xu H, Li G, Liu M, Xing G (2006) Oviposition deterrents in larval frass of the cotton boll worm, Helicoverpa armigera (Lepidoptera: Noctuidae): chemical identification and electroantennography analysis. J Insect Physiol 52:320–326CrossRefPubMedGoogle Scholar
  71. Zakir A, Sadek MM, Bengtsson M et al (2013) Herbivore-induced plant volatiles provide associational resistance against an ovipositing herbivore. J Ecol. doi: 10.1111/1365-2745.12041 Google Scholar
  72. Zimmermann O, Wührer B (2010) Initial investigations on the ability of the indigenous larval parasitoid Bracon brevicornis to control the box-tree pyralid Diaphania perspectalis in Germany. DGaaE-Nachrichten 24:25–26Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Béla P. Molnár
    • 1
  • Zoltán Tóth
    • 2
  • Zsolt Kárpáti
    • 1
  1. 1.Zoology Department, Plant Protection Institute, Centre for Agricultural ResearchHungarian Academy of SciencesBudapestHungary
  2. 2.Lendület Evolutionary Ecology Research Group, Plant Protection InstituteHungarian Academy of SciencesBudapestHungary

Personalised recommendations