Advertisement

Journal of Pest Science

, Volume 90, Issue 2, pp 479–493 | Cite as

Wireworm damage reduction in potatoes with an attract-and-kill strategy using Metarhizium brunneum

  • M. A. BrandlEmail author
  • M. Schumann
  • M. Przyklenk
  • A. Patel
  • S. Vidal
Original Paper

Abstract

Innovative wireworm control strategies are required to implement integrated pest management on the basis of the (EC) No regulation 1107/2009 and Directive 2009/128/EC. Entomopathogenic fungi, such as Metarhizium brunneum (Metschnikoff) Sorokin, are potential biological control agents for wireworm control but do not achieve high control efficacies in the field when applied as a conidia suspension. In a 2-year study, wireworm control with a novel attract-and-kill strategy aimed at enhancing M. brunneum efficacies in organic potato production systems in Lower Saxony, Germany. The approach is based on the attraction of wireworms (Agriotes spp. Eschscholtz) towards an artificial carbon dioxide-emitting source, using baker’s yeast (Saccharomyces cerevisiae Meyen ex Hansen) in combination with M. brunneum conidia for wireworm infection. Both components were encapsulated in alginate as a carrier material and applied in a mixture with two types of beads (one for encapsulated yeast and one for M.brunneum conidia). An application of these beads within the potato rows during potato planting reduced wireworm tuber damage by 37–75% relative to the untreated control and was able to enhance the efficacy of M. brunneum by up to 35% through an attract-and-kill approach compared to beads without a carbon dioxide source only. This strategy offers a high potential to promote biological wireworm control as an alternative to insecticide use by potentially reducing the inoculum compared to an inundate M. brunneum conidia release strategy.

Keywords

Wireworms Potato Encapsulation Metarhizium brunneum Carbon dioxide Attract-and-kill 

Notes

Acknowledgements

These studies were funded by means of the 7th Framework Programme of the European Union 282767 as a part of the project INBIOSOIL (http://inbiosoil.uni-goettingen.de). We would like to thank Bianca Tappe, Daniel Kretschmar and Marie Nörtemann for their technical assistance, numerous students, in particular Thies Fellenberg, for their contribution, and Dr. Christian Ahl (Georg-August-Universität Göttingen, Germany) for conducting the soil analysis. Furthermore, we would like to thank Wilfried Dreyer (Ökoring AG, Visselhövede, Germany) for his professional support, Agroscope (Reckenholz, Switzerland) for providing the strain ART2825 and all farmers for providing field sites. Finally, we would like to thank Todd Kabaluk (Agriculture and Agri-Food Canada) for commenting on a draft of the manuscript.

Funding

Work on these studies was funded by means of the 7th Framework Programme of the European Union 282767 as a part of the project INBIOSOIL (http://inbiosoil.uni-goettingen.de).

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or vertebrate animals performed by any of the authors.

Supplementary material

10340_2016_824_MOESM1_ESM.docx (20 kb)
Supplementary material 1 (DOCX 20 kb)
10340_2016_824_MOESM2_ESM.docx (21 kb)
Supplementary material 2 (DOCX 22 kb)

References

  1. Abbott WS (1987) Abbotts formula—a method of computing the effectiveness of an insecticide. J Am Mosquito Contr 3:302–303Google Scholar
  2. Anonymous (2005) Wireworms. Bull OEPP/EPPO Bull 35:179–182CrossRefGoogle Scholar
  3. Anonymous (2012) Design and analysis of efficacy evaluation trials. Bull OEPP/EPPO Bull 42:367–381CrossRefGoogle Scholar
  4. Bidochka MJ, Kasperski JE, Wild GAM (1998) Occurrence of the entomopathogenic fungi Metarhizium anisopliae and Beauveria bassiana in soils from temperate and near-northern habitats. Can J Bot 76:1198–1204Google Scholar
  5. Bischoff JF, Rehner SA, Humber RA (2009) A multilocus phylogeny of the Metarhizium anisopliae lineage. Mycologia 101:512–530. doi: 10.3852/07-202 CrossRefPubMedGoogle Scholar
  6. Cherry R, Stansly P (2008) Abundance and spatial distribution of wireworms (Coleoptera: Elateridae) in Florida sugarcane fields on muck versus sandy soils. Fla Entomol 91:383–387CrossRefGoogle Scholar
  7. Crawley MJ (2013) The R book, 2nd edn. Wiley, LondonGoogle Scholar
  8. Doane JF, Lee YW, Klingler J, Westcott ND (1975) Orientation response of Ctenicera destructor and other wireworms (Coleoptera: Elateridae) to germinating grain and to carbon-dioxide. Can Entomol 107:1233–1252CrossRefGoogle Scholar
  9. Eckard S, Ansari MA, Bacher S, Butt TM, Enkerli J, Grabenweger G (2014) Virulence of in vivo and in vitro produced conidia of Metarhizium brunneum strains for control of wireworms. Crop Prot 64:137–142. doi: 10.1016/j.cropro.2014.06.017 CrossRefGoogle Scholar
  10. European Food Safety Authority (2013) Conclusion on the peer review of the pesticide risk assessment for bees for the active substance fipronil. EFSA J 11(5):1–51. doi: 10.2903/j.efsa.2013.3158 Google Scholar
  11. European Parliament and the Council of the European Union (2009a) Directive 2009/128/EC of the European Parliament and of the Council of 21 October 2009 establishing a framework for Community action to achieve the sustainable use of pesticides. Off J Eur Union 52:71–86. doi: 10.3000/17252555.L_2009.309.eng Google Scholar
  12. European Parliament and the Council of the European Union (2009b) Regulation (EC) No 1107/2009 of the European Parliament and of the Council of 21 October 2009 concerning the placing of plant protection products on the market and repealing Council Directives 79/117/EEC and 91/414/EEC. Off J Eur Union 52:1–50. doi: 10.3000/17252555.L_2009.309.eng Google Scholar
  13. Fox CJS (1961) The distribution and abundance of wireworms in the Annapolis Valley of Nova Scotia. Can Entomol 93:276–279CrossRefGoogle Scholar
  14. Furlan L (2004) The biology of Agriotes sordidus Illiger (Col., Elateridae). J Appl Entomol 128:696–706. doi: 10.1111/j.1439-0418.2004.00914.x CrossRefGoogle Scholar
  15. Furlan L, Bonetto C, Finotto A, Lazzeri L, Malaguti L, Patalano G, Parker W (2010) The efficacy of biofumigant meals and plants to control wireworm populations. Ind Crop Prod 31:245–254. doi: 10.1016/j.indcrop.2009.10.012 CrossRefGoogle Scholar
  16. Gillespie AT, Claydon N (1989) The use of entomogenous fungi for pest-control and the role of toxins in pathogenesis. Pestic Sci. doi: 10.1002/ps.2780270210 Google Scholar
  17. Gunasekara AS, Truong T, Goh KS, Spurlock F, Tjeerdema RS (2007) Environmental fate and toxicology of fipronil. J Pestic Sci 32:189–199. doi: 10.1584/jpestics.RO7-02 CrossRefGoogle Scholar
  18. Hack H, Gall H, Klemke T, Klose R, Meier U, Stauss R, Witzen-Berger A (2001) Potato. In: Meier U (ed) Growth stages of mono-and dicotyledonous plants, vol 2., EditionFederal Biological Research Centre for Agriculture and Forestry, Germany, pp 44–51Google Scholar
  19. Hartigan JA, Kleiner B (1981) Mosaics for contingency tables. In: Eddy WF (ed) Computer Science and Statistics: proceedings of the 13th Symposium on the Interface. Springer-Verlag, New York, pp 268–273CrossRefGoogle Scholar
  20. Hartigan JA, Kleiner B (1984) A mosaic of television ratings. Am Stat 38:32–35. doi: 10.2307/2683556 Google Scholar
  21. Hermann A, Brunner N, Hann P, Wrbka T, Kromp B (2013) Correlations between wireworm damages in potato fields and landscape structure at different scales. J Pest Sci 86:41–51. doi: 10.1007/s10340-012-0444-z CrossRefGoogle Scholar
  22. Hofmann H (2003) Constructing and reading mosaicplots. Comput Stat Data An 43:565–580CrossRefGoogle Scholar
  23. Hothorn T, Bretz F, Westfall P (2008) Simultaneous inference in general parametric models. Biometrical J 50:346–363. doi: 10.1002/bimj.200810425 CrossRefGoogle Scholar
  24. Hu G, St Leger J (2002) Field studies using a recombinant mycoinsecticide (Metarhizium anisopliae) reveal that it is rhizosphere competent. Appl Environ Microb 68:6383–6387. doi: 10.1128/Aem.68.12.6383-6387.2002 CrossRefGoogle Scholar
  25. Humber RA (2012) Identification of entomopathogenic fungi. In: Lacey LA (ed) Manual of techniques in invertebrate pathology, vol 2., Academic PressLondon, UK, pp 151–187CrossRefGoogle Scholar
  26. Hyslop JA (1915) Wireworms attacking cereal and forage crops. In: Bulletin of the US Department of Agriculture no. 156, U.S. Department of Agriculture, Washington, D.C., pp 1–34Google Scholar
  27. Inglis GD, Goettel MS, Butt TM, Strasser H (2001) Use of hyphomycetous fungi for managing insect pests. In: Butt TM, Jackson C, Magan N (eds) Fungi as biocontrol agents. progress, problems and potential. CABI Publishing, Wallingford, pp. 23–69Google Scholar
  28. Inglis GD, Enkerli J, Goettel MS (2012) Laboratory techniques used for entomopathogenic fungi: hypocreales. In: Lacey LA (ed) Manual of techniques in invertebrate pathology, 2nd edn. Academic Press, London, pp 189–253CrossRefGoogle Scholar
  29. Inyang EN, McCartney HA, Oyejola B, Ibrahim L, Pye BJ, Archer SA, Butt TM (2000) Effect of formulation, application and rain on the persistence of the entomogenous fungus Metarhizium anisopliae on oilseed rape. Mycol Res 104:653–661. doi: 10.1017/S0953756200002641 CrossRefGoogle Scholar
  30. Jansson RK, Seal DR (1994) Biology and management of wireworm on potato. In: Zehnder GW, Powelson ML, Jansson RK, Raman KV (eds) Proceedings of the international conference on “Advances in Potato Pest Biology and Management”. American Phytopathological Society Press, St. Paul, pp 31–53Google Scholar
  31. Jaronski ST (2007) Soil ecology of the entomopathogenic Ascomycetes: A critical examination of what we (think) we know. In: Ekesi S, Maniania NK (eds) Use of entomopathogenic fungi in biological pests management. Research Signpost, Trivandrum, India, pp. 91–143Google Scholar
  32. Johnson SN, Anderson EA, Dawson G, Griffiths DW (2008) Varietal susceptibility of potatoes to wireworm herbivory. Agric For Entomol 10:167–174. doi: 10.1111/j.1461-9563.2008.00372.x CrossRefGoogle Scholar
  33. Kabaluk JT, Vernon RS, Goettel MS (2007) Mortality and infection of wireworm, Agriotes obscurus [Coleoptera : Elateridae], with inundative field applications of Metarhizium anisopliae. Phytoprotection 88:51–56CrossRefGoogle Scholar
  34. Kabaluk JT, Lafontaine JP, Borden JH (2015) An attract and kill tactic for click beetles based on Metarhizium brunneum and a new formulation of sex pheromone. J Pest Sci 88:707–716. doi: 10.1007/s10340-015-0661-3 CrossRefGoogle Scholar
  35. Kaplan EL, Meier P (1958) Nonparametric-estimation from incomplete observations. J Am Stat Assoc 53:457–481. doi: 10.2307/2281868 CrossRefGoogle Scholar
  36. Keiser A, Haberli M, Stamp P (2012) Drycore appears to result from an interaction between Rhizoctonia solani and wireworm (Agriotes ssp.) evidence from a 3-year field survey. Potato Res 55:59–67. doi: 10.1007/s11540-012-9207-8 CrossRefGoogle Scholar
  37. Keller S, Kessler P, Schweizer C (2003) Distribution of insect pathogenic soil fungi in Switzerland with special reference to Beauveria brongniartii and Metharhizium anisopliae. Biocontrol 48:307–319. doi: 10.1023/A:1023646207455 CrossRefGoogle Scholar
  38. Kölliker U, Biasio L, Jossi W (2011) Potential control of swiss wireworms with entomopathogenic fungi. IOBC/wprs Bull 66:517–520Google Scholar
  39. Lacey LA, Solter LF (2012) Initial handling and diagnosis of diseased invertbrates. In: Lacey LA (ed) Manual of techniques in invertebrate pathology, vol 2. Academic Press, LondonGoogle Scholar
  40. Lafrance J (1968) The seasonal movements of wireworms (Coleoptera: Elateridae) in relation to soil moisture and temperature in the organic soils of southwestern Quebec. Can Entomol 100:801–807CrossRefGoogle Scholar
  41. Lundegardh H (1927) Carbon dioxide evolution and crop growth. Soil Sci 23:417–453CrossRefGoogle Scholar
  42. Meyer D, Zeileis A, Hornik K (2006) The strucplot framework: visualizing multi-way contingency tables with vcd. J Stat Softw 17:1–48CrossRefGoogle Scholar
  43. Meyer D, Zeileis A, Hornik K (2014) vcd: Visualizing categorical data. R package version 1.3-2Google Scholar
  44. Meyling NV, Eilenberg J (2007) Ecology of the entomopathogenic fungi Beauveria bassiana and Metarhizium anisopliae in temperate agroecosystems: potential for conservation biological control. Biol Control 43:145–155. doi: 10.1016/j.biocontro1.2007.07.007 CrossRefGoogle Scholar
  45. Mietkiewski RT, Pell JK, Clark SJ (1997) Influence of pesticide use on the natural occurrence of entomopathogenic fungi in arable soils in the UK: field and laboratory comparisons. Biocontrol Sci Technol 7:565–575CrossRefGoogle Scholar
  46. Neuhoff D, Christen C, Paffrath A, Schepl U (2007) Approaches to wireworm control in organic potato production. IOBC/wprs Bull 30:65–68Google Scholar
  47. Parker WE, Howard JJ (2001) The biology and management of wireworms (Agriotes spp.) on potato with particular reference to the U.K. Agric For Entomol 3:85–98. doi: 10.1046/j.1461-9563.2001.00094.x CrossRefGoogle Scholar
  48. Pilz C, Enkerli J, Wegensteiner R, Keller S (2011) Establishment and persistence of the entomopathogenic fungus Metarhizium anisopliae in maize fields. J Appl Entomol 135:393–403. doi: 10.1111/j.1439-0418.2010.01566.x CrossRefGoogle Scholar
  49. Posadas JB, Comerio RM, Mini JI, Nussenbaum AL, Lecuona RE (2012) A novel dodine-free selective medium based on the use of cetyl trimethyl ammonium bromide (CTAB) to isolate Beauveria bassiana, Metarhizium anisopliae sensu lato and Paecilomyces lilacinus from soil. Mycologia 104:974–980. doi: 10.3852/11-234 CrossRefPubMedGoogle Scholar
  50. Raich JW, Schlesinger WH (1992) The global carbon-dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus B 44:81–99. doi: 10.1034/j.1600-0889.1992.t01-1-00001.x CrossRefGoogle Scholar
  51. Rixon AJ, Bridge BJ (1968) Respiratory quotient arising from microbial activity in relation to matric suction and air filled pore space of soil. Nature 218:961–962. doi: 10.1038/218961a0 CrossRefPubMedGoogle Scholar
  52. Rovira AD (1953) Use of the warburg apparatus in soil metabolism studies. Nature 172:29–30. doi: 10.1038/172029b0 CrossRefPubMedGoogle Scholar
  53. Saxton KE, Rawls WJ, Romberger JS, Papendick RI (1986) Estimating generalized soil-water characteristics from texture. Soil Sci Soc Am J 50:1031–1036CrossRefGoogle Scholar
  54. Scheepmaker JWA, Butt TM (2010) Natural and released inoculum levels of entomopathogenic fungal biocontrol agents in soil in relation to risk assessment and in accordance with EU regulations. Biocontrol Sci Technol 20(5):503–552CrossRefGoogle Scholar
  55. Schumann M, Patel A, Vidal S (2014a) Soil application of an encapsulated CO2 source and its potential for management of western corn rootworm larvae. J Econ Entomol 107:230–239. doi: 10.1603/Ec13344 CrossRefPubMedGoogle Scholar
  56. Schumann M, Toepfer S, Vemmer M, Patel A, Kuhlmann U, Vidal S (2014b) Field evaluation of an attract and kill strategy against western corn rootworm larvae. J Pest Sci 87:259–271. doi: 10.1007/s10340-013-0551-5 CrossRefGoogle Scholar
  57. Shah FA, Wang CS, Butt TM (2005) Nutrition influences growth and virulence of the insect-pathogenic fungus Metarhizium anisopliae. FEMS Microbiol Lett 251:259–266. doi: 10.1016/j.femsle.2005.08.010 CrossRefPubMedGoogle Scholar
  58. St. Leger RJ (2008) Studies on adaptations of Metarhizium anisopliae to life in the soil. J Invertebr Pathol 98:271–276. doi: 10.1016/j.jip.2008.01.007 CrossRefPubMedGoogle Scholar
  59. Strasser H, Forer A, Schinner F (1996) Development of media for the selective isolation and maintenance of virulence of Beauveria brongniartii. In: Jackson TA, Glare TR (eds) Proceedings 3rd international workshop on microbial control of soil dwelling pests. AgResearch, Lincoln, New Zealand, pp. 125–130Google Scholar
  60. R Development Core Team (2013) R: a language and environment for statistical computing. R foundation for statistical computing. Vienna, Austria. http://www.R-project.org/
  61. Thomas CA (1940) The biology and control ow wireworms: A review of the literature. The Pennsylvania State College, School of Agriculture and Experiment Station, State College, p 392Google Scholar
  62. Traugott M, Benefer CM, Blackshaw RP, van Herk WG, Vernon RS (2015) Biology, ecology, and control of elaterid beetles in agricultural land. Annu Rev Entomol 60:313–334. doi: 10.1146/annurev-ento-010814-021035 CrossRefPubMedGoogle Scholar
  63. Turpin HW (1920) The carbon dioxide of the soil air. Cornell University Agr Exp Sta, Memoir 32:315–362Google Scholar
  64. van Herk WG, Vernon RS (2007) Soil bioassay for studying behavioral responses of wireworms (Coleoptera: Elateridae) to insecticide-treated wheat seed. Environ Entomol 36:1441–1449. doi: 10.1603/0046-225x(2007)36[1441:sbfsbr]2.0.co;2 CrossRefPubMedGoogle Scholar
  65. van Herk WG, Vernon RS, Moffat C, Harding C (2008a) Response of the pacific coast wireworm, Limonius canus, and the dusky wireworm, Agriotes obscurus (Coleoptera: Elateridae), to insecticide-treated wheat seeds in a soil bioassay. Phytoprotection 89:7–19CrossRefGoogle Scholar
  66. van Herk WG, Vernon RS, Tolman JH, Saavedra HO (2008b) Mortality of a wireworm, Agriotes obscurus (Coleoptera: Elateridae), after topical application of various insecticides. J Econ Entomol 101:375–383. doi: 10.1093/jee/101.2.375 CrossRefPubMedGoogle Scholar
  67. Vanninen I (1996) Distribution and occurrence of four entomopathogenic fungi in Finland: effect of geographical location, habitat type and soil type. Mycol Res 100:93–101CrossRefGoogle Scholar
  68. Vanninen I, Tyni-Juslin J, Hokkanen H (2000) Persistence of augmented Metarhizium anisopliae and Beauveria bassiana in Finnish agricultural soils. Biocontrol 45:201–222. doi: 10.1023/A:1009998919531 CrossRefGoogle Scholar
  69. Vemmer M, Patel AV (2013) Review of encapsulation methods suitable for microbial biological control agents. Biol Control 67:380–389. doi: 10.1016/j.biocontrol.2013.09.003 CrossRefGoogle Scholar
  70. Vemmer M, Schumann M, Beitzen-Heineke W, French BW, Vidal S, Patel A (2016) Development of a CO2 releasing co-formulation based on starch Saccharomyces cerevisiae and Beauveria bassiana attractive towards western corn rootworm larvae. Pest Manag Sci. doi: 10.1002/ps.4245 PubMedGoogle Scholar
  71. Vernon RS, van Herk WG (2013) Wireworms as pests of potato. In: Giordanengo P, Vincent C, Alyokhin A (eds) Insect pests of potato. Academic Press, Oxford, pp 103–164CrossRefGoogle Scholar
  72. Vernon RS, Van Herk WG, Clodius M, Harding C (2013) Further studies on wireworm management in Canada: damage protection versus wireworm mortality in potatoes. J Econ Entomol 106:786–799. doi: 10.1603/Ec12180 CrossRefPubMedGoogle Scholar
  73. Vernon RS, van Herk WG, Clodius M, Tolman J (2016) Companion planting attract-and-kill method for wireworm management in potatoes. J Pest Sci. doi: 10.1007/s10340-015-0707-6 Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • M. A. Brandl
    • 1
    Email author
  • M. Schumann
    • 1
  • M. Przyklenk
    • 2
  • A. Patel
    • 2
  • S. Vidal
    • 1
  1. 1.Department of Crop SciencesAgricultural EntomologyGeorg-August-Universität GöttingenGöttingenGermany
  2. 2.WG Fermentation and Formulation of Biologicals and Chemicals, Faculty of Engineering and MathematicsUniversity of Applied Sciences BielefeldBielefeldGermany

Personalised recommendations