Advertisement

Journal of Pest Science

, Volume 89, Issue 2, pp 313–328 | Cite as

Grapevine insect pests and their natural enemies in the age of global warming

  • Annette ReinekeEmail author
  • Denis Thiéry
Review

Abstract

We review direct and indirect effects of climate change on both the grapevine plant as a host for phytophagous insects, as well as on grape insect pests, their natural enemies and corresponding future grape plant protection strategies. Phenology, voltinism and distribution ranges are well known traits of many arthropods influenced by temperature as the key abiotic factor and thus by current and future climate change scenarios. Case studies of grapevine pests based on data from three decades point to clear changes in phenology of grape berry moths, shifts in distribution ranges of leafhoppers as vectors of grapevine diseases and range expansion of grapevine mealybugs. These case studies also illustrate the need to include data on putatively changed tri-trophic interactions in vineyards when predicting impacts of climate change on grapevine pest insects. Hence, future pest management strategies should be based on a sound set of field data obtained for both pests and antagonists under changed abiotic conditions, which can also build the basis for refining and extending currently existing models for forecasting population levels of respective insect pests.

Keywords

Climate change Viticulture Trophic interactions Biological control Insect phenology 

Notes

Acknowledgments

The authors are members of the IOBC working group ‘Integrated protection and production in viticulture’ and their research units are partners in the Bordeaux-Adelaide-Geisenheim (BAG) international project alliance. AR acknowledges funds by the LOEWE excellence cluster FACE2FACE of the Hessian State Ministry of Higher Education, Research and the Arts. Berthold Fuchs kindly provided data on phenology of grape berry moths in the Rheingau region, Germany. The German meteorological service (Deutscher Wetterdienst) is acknowledged for providing local air temperature data. We thank three anonymous reviewers for comments on an earlier version of the manuscript and Christiane Jost for linguistic revision. DT research unit belongs to the Labex COTE research program.

Compliance with ethical standards

Ethical Statements

This article is a review paper and does not contain any experiment with animals performed by any of the authors.

References

  1. Adamo SA, Lovettt MM (2011) Some like it hot: the effects of climate change on reproduction, immune function and disease resistance in the cricket Gryllus texensis. J Exp Bot 214:1997–2004CrossRefGoogle Scholar
  2. Almeida R, Daane K, Bell V, Blaisdell GK, Cooper M, Herrbach E, Pietersen G (2013) Ecology and management of grapevine leafroll disease. Front Microbiol. doi: 10.3389/fmicb.2013.00094 Google Scholar
  3. Anas O, Brannen PM, Sutton TB (2006) The effect of warming winter temperatures on the severity of Pierce’s disease in the southeastern United States. Phytopathology 96:S5–S5Google Scholar
  4. Andreadis SS, Milonas PG, Savopoulou-Soultani M (2005) Cold hardiness of diapausing and non-diapausing pupae of the European grapevine moth, Lobesia botrana. Entomol Exp Appl 117:113–118CrossRefGoogle Scholar
  5. Anshelevich L, Kehat M, Dunkelblum E, Greenberg S (1994) Sex-pheromone traps for monitoring the European vine moth, Lobesia botrana—effect of dispenser type, pheromone dose, field aging of dispenser, and type of trap on male captures. Phytoparasitica 22:281–290. doi: 10.1007/bf02980529 CrossRefGoogle Scholar
  6. Audouin V (1842) Histoire des insectes nuisibles de la vigne et particulièrement de la pyrale. Fortin, Masson & Co., ParisGoogle Scholar
  7. Bale JS, Hayward SA (2010) Insect overwintering in a changing climate. J Exp Biol 213:980–994PubMedCrossRefGoogle Scholar
  8. Bale JS, Masters GJ, Hodkinson ID, Awmack C, Bezemer TM, Brown VK, Butterfield J, Buse A, Coulson JC, Farrar J, Good JEG, Harrington R, Hartley S, Jones TH, Lindroth RL, Press MC, Symrnioudis I, Watt AD, Whittaker JB (2002) Herbivory in global climate change research: direct effects of rising temperature on insect herbivores. Glob Change Biol 8:1–16CrossRefGoogle Scholar
  9. Barah P, Bones AM (2015) Multidimensional approaches for studying plant defence against insects: from ecology to omics and synthetic biology. J Exp Bot 66:479–493. doi: 10.1093/jxb/eru489 PubMedCrossRefGoogle Scholar
  10. Bauerfeind SS, Fischer K (2014) Integrating temperature and nutrition—environmental impacts on an insect immune system. J Insect Physiol 64:14–20. doi: 10.1016/j.jinsphys.2014.03.003 PubMedCrossRefGoogle Scholar
  11. Belli G, Fortusini A, Rui D (1985) Recent spread of flavescence dorée and its vector in vineyards of Northern Italy. Phytopathol Mediterr 24:189–191Google Scholar
  12. Berg MP, Kiers ET, Driessen G, van der Heijden M, Kooi BW, Kuenen F, Liefting M, Verhoef HA, Ellers J (2010) Adapt or disperse: understanding species persistence in a changing world. Glob Change Biol 16:587–598. doi: 10.1111/j.1365-2486.2009.02014.x CrossRefGoogle Scholar
  13. Bertin S, Guglielmino CR, Karam N, Gomulski LM, Malacrida AR, Gasperi G (2007) Diffusion of the Nearctic leafhopper Scaphoideus titanus Ball in Europe: a consequence of human trading activity. Genetica 131:275–285PubMedCrossRefGoogle Scholar
  14. Bindi M, Fibbi L, Miglietta F (2001) Free air CO2 enrichment (FACE) of grapevine (Vitis vinifera L.): II. Growth and quality of grape and wine in response to elevated CO2 concentrations. Eur J Agron 14:145–155CrossRefGoogle Scholar
  15. Blua MJ, Morgan DJW (2003) Dispersion of Homalodisca coagulata (Hemiptera: Cicadellidae), a vector of Xylella fastidiosa, into vineyards in southern California. J Econ Entomol 96:1369–1374PubMedCrossRefGoogle Scholar
  16. Bonfils J, Schvester D (1960) Les cicadelles (Homoptera Auchenorhyncha) dans leurs rapports avec la vigne dans le Sud-Ouest de la France. Ann Epiphyt 3:325–336Google Scholar
  17. Bostanian NJ, Vincent C, Isaacs R (2012) Arthropod management in vineyards: pests, approaches, and future directions. Springer, Dordrecht. doi: 10.1007/978-94-007-4032-7 CrossRefGoogle Scholar
  18. Bradshaw WE, Holzapfel CM (2001) Genetic shift in photoperiodic response correlated with global warming. Proc Natl Acad Sci USA 98:14509–14511. doi: 10.1073/pnas.241391498 PubMedPubMedCentralCrossRefGoogle Scholar
  19. Caffarra A, Rinaldi M, Eccel E, Rossi V, Pertot I (2012) Modelling the impact of climate change on the interaction between grapevine and its pests and pathogens: european grapevine moth and powdery mildew. Agric Ecosyst Environ 148:89–101. doi: 10.1016/j.agee.2011.11.017 CrossRefGoogle Scholar
  20. Calonnec A, Burie JB, Langlais M, Guyader S, Saint-Jean S, Sache I, Tivoli B (2013) Impacts of plant growth and architecture on pathogen processes and their consequences for epidemic behaviour. Eur J Plant Pathol 135:479–497. doi: 10.1007/s10658-012-0111-5 CrossRefGoogle Scholar
  21. Cariddi C, Saponari M, Boscia D, De Stradis A, Loconsole G, Nigro F, Porcelli F, Potere O, Martelli GP (2014) Isolation of a Xylella fastidiosa strain infecting olive and oleander in Apulia, Italy. J Plant Pathol 96:425–429Google Scholar
  22. Carroll JE, Wilcox WF (2003) Effects of humidity on the development of grapevine powdery mildew. Phytopathology 93:1137–1144PubMedCrossRefGoogle Scholar
  23. Chen S, Fleischer SJ, Saunders MC, Thomas MB (2015) The influence of diurnal temperature variation on degree-day accumulation and insect life history. PLoS One. doi: 10.1371/journal.pone.0120772 Google Scholar
  24. Christensen NM, Axelsen KB, Nicolaisen M, Schulz A (2005) Phytoplasmas and their interactions with hosts. Trends Plant Sci 10:526–535PubMedCrossRefGoogle Scholar
  25. Chuche J, Thiéry D (2009) Cold winter temperatures condition the egg-hatching dynamics of a grape disease vector. Naturwissenschaften 96:827–834PubMedPubMedCentralCrossRefGoogle Scholar
  26. Chuche J, Thiéry D (2012) Egg incubation temperature differently affects female and male hatching dynamics and larval fitness in a leafhopper. Ecol Evol 2:732–739. doi: 10.1002/ece3.89 PubMedPubMedCentralCrossRefGoogle Scholar
  27. Chuche J, Thiéry D (2014) Biology and ecology of the Flavescence dorée vector Scaphoideus titanus: a review. Agron Sustain Dev 34:381–403. doi: 10.1007/s13593-014-0208-7 CrossRefGoogle Scholar
  28. Chuine I, Yiou P, Viovy N, Seguin B, Daux V, Ladurie EL (2004) Historical phenology: grape ripening as a past climate indicator. Nature 432:289–290. doi: 10.1038/432289a PubMedCrossRefGoogle Scholar
  29. Cini A, Ioriatti C, Anfora G (2012) A review of the invasion of Drosophila suzukii in Europe and a draft research agenda for integrated pest management. Bull Insectol 65:149–160Google Scholar
  30. Colinet H, Sinclair BJ, Vernon P, Renault D (2015) Insects in fluctuating thermal environments. Annu Rev Entomol 60:123–140. doi: 10.1146/annurev-ento-010814-021017 PubMedCrossRefGoogle Scholar
  31. Constable JVH, Litvak ME, Greenberg JP, Monson RK (1999) Monoterpene emission from coniferous trees in response to elevated CO2 concentration and climate warming. Glob Change Biol 5:255–267Google Scholar
  32. Constable FE, Jones J, Gibb KS, Chalmers YM, Symons RH (2004) The incidence, distribution and expression of Australian grapevine yellows, restricted growth and late season leaf curl diseases in selected Australian vineyards. Ann Appl Biol 144:205–218CrossRefGoogle Scholar
  33. Cooper M, Varela L, Smith R, Whitmer D, Simmons G, Lucchi A, Broadway R, Steinhauer R (2014) Growers, scientists and regulators collaborate on European grapevine moth program. Calif Agric 68:125–133. doi: 10.3733/ca.v068n04p125 CrossRefGoogle Scholar
  34. Coviella CE, Trumble JT (1999) Effects of elevated atmospheric carbon dioxide on insect–plant interactions. Conserv Biol 13:700–712CrossRefGoogle Scholar
  35. Cozzi G, Pascale M, Perrone G, Visconti A, Logrieco A (2006) Effect of Lobesia botrana damages on black aspergilli ochratoxin A content in grapes. Int J Food Microbiol 111:88–92CrossRefGoogle Scholar
  36. Daane KM, Williams LE (2003) Manipulating vineyard irrigation amounts to reduce insect pest damage. Ecol Appl 13:1650–1666. doi: 10.1890/02-5328 CrossRefGoogle Scholar
  37. Daane K, Bentley W, Walton V, Malakar-Kuenen R, Millar J, Ingels C, Weber E, Gispert C (2006) New controls investigated for vine mealybug. Cal Ag 60:31–38. doi: 10.3733/ca.v060n01p31 CrossRefGoogle Scholar
  38. Daane KM, Almeida RPP, Bell VA, Walker JTS, Botton M, Fallahzadeh M, Mani M, Miano JL, Sforza R, Walton VM, Zaviezo T (2012) Biology and management of mealybugs in vineyards. In: Bostanian NJ, Isaacs R, Vincent C (eds) Arthropod management in Vineyards. Springer, Dordrecht, pp 271–308CrossRefGoogle Scholar
  39. DeLucia EH, Casteel CL, Nabity PD, O’Neill BF (2008) Insects take a bigger bite out of plants in a warmer, higher carbon dioxide world. Proc Natl Acad Sci USA 105:1781–1782. doi: 10.1073/pnas.0712056105 PubMedPubMedCentralCrossRefGoogle Scholar
  40. DeLucia EH, Nabity PD, Zavala JA, Berenbaum MR (2012) Climate change: resetting plant–insect interactions. Plant Physiol 160:1677–1685. doi: 10.1104/pp.112.204750 PubMedPubMedCentralCrossRefGoogle Scholar
  41. Denlinger DL (2002) Regulation of diapause. Annu Rev Entomol 47:93–122PubMedCrossRefGoogle Scholar
  42. Dudareva N, Negre F, Nagegowda DA, Orlova I (2006) Plant volatiles: recent advances and future perspectives. Crit Rev Plant Sci 25:417–440. doi: 10.1080/07352680600899973 CrossRefGoogle Scholar
  43. EFSA (2015) Scientific Opinion on the risks to plant health posed by Xylella fastidiosa in the EU territory, with the identification and evaluation of risk reduction options. EFSA J 13:3989. doi: 10.2903/j.efsa.2015.3989 Google Scholar
  44. Eisenhauer N, Cesarz S, Koller R, Worm K, Reich PB (2012) Global change belowground: impacts of elevated CO2, nitrogen, and summer drought on soil food webs and biodiversity. Glob Change Biol 18:435–447. doi: 10.1111/j.1365-2486.2011.02555.x CrossRefGoogle Scholar
  45. EPPO (2007) Grapevine flavescence doree phytoplasma. Bull OEPP/EPPO 37:536–542CrossRefGoogle Scholar
  46. Falzoi S, Lessio F, Spanna F, Alma A (2014) Influence of temperature on the embryonic and post-embryonic development of Scaphoideus titanus (Hemiptera: Cicadellidae), vector of grapevine flavescence doree. Int J Pest Manag 60:246–257. doi: 10.1080/09670874.2014.966170 CrossRefGoogle Scholar
  47. Feil H, Purcell AH (2001) Temperature-dependent growth and survival of Xylella fastidiosa in vitro and in potted grapevines. Plant Dis 85:1230–1234CrossRefGoogle Scholar
  48. Fermaud M, Giboulot A (1996) Influence of Lobesia botrana larvae on field severity of Botrytis rot of grape berries. Plant Dis 76:404–409CrossRefGoogle Scholar
  49. Firake DM, Khan MA (2014) Alternating temperatures affect the performance of Trichogramma species. J Insect Sci 14:41PubMedPubMedCentralCrossRefGoogle Scholar
  50. Fischer EM, Knutti R (2015) Anthropogenic contribution to global occurrence of heavy-precipitation and high-temperature extremes. Nat Clim Change 5:560–564. doi: 10.1038/nclimate2617 CrossRefGoogle Scholar
  51. Foerster MR, Foerster LA (2009) Effects of temperature on the immature development and emergence of five species of Trichogramma. Biocontrol 54:445–450CrossRefGoogle Scholar
  52. Gallardo A, Ocete R, Lopez MA, Maistrello L, Ortega F, Semedo A, Soria FJ (2009) Forecasting the flight activity of Lobesia botrana (Denis & Schiffermuller) (Lepidoptera, Tortricidae) in Southwestern Spain. J Appl Entomol 133:626–632. doi: 10.1111/j.1439-0418.2009.01417.x CrossRefGoogle Scholar
  53. Garrett KA, Dendy SP, Frank EE, Rouse MN, Travers SE (2006) Climate change effects on plant disease: genomes to ecosystems. Annu Rev Phytopathol 44:489–509. doi: 10.1146/annurev.phyto.44.070505.143420 PubMedCrossRefGoogle Scholar
  54. Gevrey M, Worner SP (2006) Prediction of global distribution of insect pest species in relation to climate by using an ecological informatics method. J Econ Entomol 99:979–986PubMedCrossRefGoogle Scholar
  55. Gomi T, Nagasaka M, Fukuda T, Hagihara H (2007) Shifting of the life cycle and life-history traits of the fall webworm in relation to climate change. Entomol Exp Appl 125:179–184. doi: 10.1111/j.1570-7458.2007.00616.x CrossRefGoogle Scholar
  56. Gross HR (1988) Effect of temperature, relative humidity, and free water on the number and normalcy of Trichogramma pretiosum Riley (Hymenoptera: Trichogrammatidae) emerging from eggs of Heliothis zea (Boddie) (Lepidoptera: Noctuidae). Environ Entomol 17:470–475CrossRefGoogle Scholar
  57. Guerenstein PG, Hildebrand JG (2008) Roles and effects of environmental carbon dioxide in insect life. Annu Rev Entomol 53:161–178. doi: 10.1146/annurev.ento.53.103106.093402 PubMedCrossRefGoogle Scholar
  58. Gutierrez AP, Daane KM, Ponti L, Walton VM, Ellis CK (2008a) Prospective evaluation of the biological control of vine mealybug: refuge effects and climate. J Appl Ecol 45:524–536CrossRefGoogle Scholar
  59. Gutierrez AP, Ponti L, d’Oultremont T, Ellis CK (2008b) Climate change effects on poikilotherm tritrophic interactions. Clim Change 87:S167–S192CrossRefGoogle Scholar
  60. Gutierrez AP, Ponti L, Hoddle M, Almeida RPP, Irvin NA (2011) Geographic distribution and relative abundance of the invasive glassy-winged sharpshooter: effects of temperature and egg parasitoids. Environ Entomol 40:755–769. doi: 10.1603/en10174 PubMedCrossRefGoogle Scholar
  61. Gutierrez AP, Ponti L, Cooper ML, Gilioli G, Baumgartner J, Duso C (2012) Prospective analysis of the invasive potential of the European grapevine moth Lobesia botrana (Den. & Schiff.) in California. Agric For Entomol 14:225–238. doi: 10.1111/j.1461-9563.2011.00566.x CrossRefGoogle Scholar
  62. Gutschick VP (2007) Plant acclimation to elevated CO2- From simple regularities to biogeographic chaos. Ecol Model 200:433–451CrossRefGoogle Scholar
  63. Haine ER, Moret Y, Siva-Jothy MT, Rolff J (2008) Antimicrobial defense and persistent infection in insects. Science 322:1257–1259PubMedCrossRefGoogle Scholar
  64. Hammill E, Petchey OL, Anholt BR (2010) Predator functional response changed by induced defenses in prey. Am Nat 176:723–731PubMedCrossRefGoogle Scholar
  65. Hanna R, Wilson LT, Zalom FG, Flaherty DL, Leavitt GM (1996) Spatial and temporal dynamics of spider mites (Acari: Tetranychidae) in ‘Thompson Seedless’ vineyards. Environ Entomol 25:370–382CrossRefGoogle Scholar
  66. Hannah L, Roehrdanz PR, Ikegami M, Shepard AV, Shaw MR, Tabor G, Zhi L, Marquet PA, Hijmans RJ (2013) Climate change, wine, and conservation. Proc Natl Acad Sci USA 110:6907–6912. doi: 10.1073/pnas.1210127110 PubMedPubMedCentralCrossRefGoogle Scholar
  67. Hauser M (2011) A historic account of the invasion of Drosophila suzukii (Matsumura) (Diptera: Drosophilidae) in the continental United States, with remarks on their identification. Pest Manag Sci 67:1352–1357. doi: 10.1002/ps.2265 PubMedCrossRefGoogle Scholar
  68. Hoddle MS (2004) The potential adventive geographic range of glassy-winged sharpshooter, Homalodisca coagulata and the grape pathogen Xylella fastidiosa: implications for California and other grape growing regions of the world. Crop Prot 23:691–699CrossRefGoogle Scholar
  69. Hoffmann AA, Sørensen JG, Loeschcke V (2003) Adaptation of Drosophila to temperature extremes: bringing together quantitative and molecular approaches. J Therm Biol 28:175–216CrossRefGoogle Scholar
  70. Hopkins DL, Purcell AH (2002) Xylella fastidiosa: cause of Pierce’s disease of grapevine and other emergent diseases. Plant Dis 86:1056–1066CrossRefGoogle Scholar
  71. Horton DE, Johnson NC, Singh D, Swain DL, Rajaratnam B, Diffenbaugh NS (2015) Contribution of changes in atmospheric circulation patterns to extreme temperature trends. Nature 522:465–469. doi: 10.1038/nature14550 PubMedCrossRefGoogle Scholar
  72. Hunter S (2005) Invasive alien species: meeting the challenge at a time of increasing globalisation of trade. In: Alford DV, Backhaus GF (eds) Plant protection and plant health in Europe: introduction and spread of invasive species. BCPC, BerlinGoogle Scholar
  73. IPCC (2014) Climate Change 2014: impacts, adaptation, and vulnerability. Part A: global and sectoral aspects. Contributions of working group II to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  74. Jeger MJ, Pautasso M (2008) Plant disease and global change—the importance of long-term data sets. New Phytol 177:8–11PubMedCrossRefGoogle Scholar
  75. Jenkinson LS, Davis AJ, Wood S, Shorrocks B, Lawton JH (1996) Not that simple: global warming and predictions of insect ranges and abundances—results from a model insect assemblage in replicated laboratory ecosystems. Asp Appl Biol 45:343–348Google Scholar
  76. Johannesen J, Lux B, Michel K, Seitz A, Maixner M (2008) Invasion biology and host specificity of the grapevine yellows disease vector Hyalesthes obsoletus in Europe. Entomol Exp Appl 126:217–227. doi: 10.1111/j.1570-7458.2007.00655.x CrossRefGoogle Scholar
  77. Johnson MW, Daane KM, Groves R, Backus E (2007) Spatial population dynamics and overwintering biology of the glassy-winged sharpshooter in California’s San Joaquin Valley. In: Pierce’s Disease Research Symposium. California Department of Food & Agriculture, San Diego, pp 30–33Google Scholar
  78. Jones GV, Davis RE (2000) Climate influences on grapevine phenology, grape composition, and wine production and quality for Bordeaux, France. Am J Enol Vit 51:249–261Google Scholar
  79. Jones GV, White MA, Cooper OR, Strochmann K (2005) Climate change and global wine quality. Clim Change 73:319–343CrossRefGoogle Scholar
  80. Kalyebi A, Overholt WA, Schulthess F, Mueke JM, Sithanantham S (2006) The effect of temperature and humidity on the bionomics of six African egg parasitoids (Hymenoptera: Trichogrammatidae). Bull Entomol Res 96:305–314PubMedCrossRefGoogle Scholar
  81. Kennelly MM, Gadoury DM, Wilcox WF, Magarey PA, Seem RC (2007) Primary infection, lesion productivity, and survival of sporangia in the grapevine downy mildew pathogen Plasmopara viticola. Phytopathology 97:512–522. doi: 10.1094/phyto-97-4-0512 PubMedCrossRefGoogle Scholar
  82. Kerchev PI, Fenton B, Foyer CH, Hancock RD (2012) Plant responses to insect herbivory: interactions between photosynthesis, reactive oxygen species and hormonal signalling pathways. Plant Cell Environ 35:441–453. doi: 10.1111/j.1365-3040.2011.02399.x PubMedCrossRefGoogle Scholar
  83. Kliebenstein DJ (2014) Orchestration of plant defense systems: genes to populations. Trends Plant Sci 19:250–255. doi: 10.1016/j.tplants.2014.01.003 PubMedCrossRefGoogle Scholar
  84. Korner C (2006) Plant CO2 responses: an issue of definition, time and resource supply. New Phytol 172:393–411. doi: 10.1111/j.1469-8137.2006.01886.x PubMedCrossRefGoogle Scholar
  85. Leibar U, Aizpurua A, Unamunzaga O, Pascual I, Morales F (2015) How will climate change influence grapevine cv. Tempranillo photosynthesis under different soil textures? Photosynth Res 124:199–215PubMedCrossRefGoogle Scholar
  86. Lieth JH, Meyer MM, Yeo KH, Kirkpatrick BC (2011) Modeling cold curing of Pierce’s disease in Vitis vinifera ‘Pinot Noir’ and ‘Cabernet Sauvignon’ grapevines in California. Phytopathology 101:1492–1500. doi: 10.1094/phyto-08-10-0207 PubMedCrossRefGoogle Scholar
  87. Long SP, Ainsworth EA, Rogers A, Ort DR (2004) Rising atmospheric carbon dioxide: plants FACE the future. Annu Rev Plant Biol 55:591–628PubMedCrossRefGoogle Scholar
  88. Long SP, Ainsworth EA, Leakey ADB, Nosberger J, Ort DR (2006) Food for thought: lower-than-expected crop yield stimulation with rising CO2 concentrations. Science 312:1918–1921. doi: 10.1126/science.1114722 PubMedCrossRefGoogle Scholar
  89. Loreto F, Schnitzler JP (2010) Abiotic stresses and induced BVOCs. Trends Plant Sci 15:154–166. doi: 10.1016/j.tplants.2009.12.006 PubMedCrossRefGoogle Scholar
  90. Maher N, Thiéry D, Stadler E (2006) Oviposition by Lobesia botrana is stimulated by sugars detected by contact chemoreceptors. Physiol Entomol 30:1–9Google Scholar
  91. Maixner M (2005) Risks posed by the spread and dissemination of grapevine pathogens and their vectors. In: Alford DV, Backhaus GF (eds) Plant protection and plant health in Europe: introduction and spread of invasive species. The British Crop Protection Council, Berlin, pp 141–146Google Scholar
  92. Mandriolo M (2012) Someone like it hot? Effects of global warming on insect immunity and microbiota. Invert Surv J 9:58–63Google Scholar
  93. Marchal P (1912) Rapport sur les travaux accomplis par la Mission d’étude de la cochylis et de l’eudémis pendant l’année 1911. Librairie Polytechnique Ch. Béranger Publ., ParisGoogle Scholar
  94. Martensson A (2007) Need for protective measures to combat potential outbreaks of Homalodiscia coagulata and Pierce’s disease in European viticulture. Acta Agric Scand B Soil Plant Sci 57:1–9. doi: 10.1080/09064710600684839 Google Scholar
  95. Martin-Vertedor D, Ferrero-Garcia JJ, Torres-Vila LM (2010) Global warming affects phenology and voltinism of Lobesia botrana in Spain. Agric For Entomol 12:169–176. doi: 10.1111/j.1461-9563.2009.00465.x CrossRefGoogle Scholar
  96. Melo-Braga MN, Verano-Braga T, León IR, Antonacci D, Nogueira FCS, Thelen JJ, Larsen MR, Palmisano G (2012) Modulation of protein phosphorylation, N-glycosylation and Lys-acetylation in grape (Vitis vinifera) mesocarp and exocarp owing to Lobesia botrana infection. Mol Cell Proteom 11:945–956. doi: 10.1074/mcp.M112.020214 CrossRefGoogle Scholar
  97. Monceau K, Bonnard O, Thiéry D (2014) Vespa velutina: a new invasive predator of honeybees in Europe. J Pest Sci 87:1–16. doi: 10.1007/s10340-013-0537-3 CrossRefGoogle Scholar
  98. Moreau J, Villemant C, Benrey B, Thiéry D (2010) Species diversity of larval parasitoids of the European grapevine moth (Lobesia botrana, Lepidoptera: Tortricidae): the influence of region and cultivar. Biol Control 54:300–306CrossRefGoogle Scholar
  99. Musolin DL (2007) Insects in a warmer world: ecological, physiological and life-history responses of true bugs (Heteroptera) to climate change. Glob Change Biol 13:1565–1585. doi: 10.1111/j.1365-2486.2007.01395.x CrossRefGoogle Scholar
  100. Nabity PD, Haus MJ, Berenbaum MR, DeLucia EH (2013) Leaf-galling phylloxera on grapes reprograms host metabolism and morphology. Proc Natl Acad Sci USA 110:16663–16668. doi: 10.1073/pnas.1220219110 PubMedPubMedCentralCrossRefGoogle Scholar
  101. Nagarkatti S, Tobin PC, Saunders MC (2001) Diapause induction in the grape berry moth (Lepidoptera: Tortricidae). Environ Entomol 30:540–544CrossRefGoogle Scholar
  102. Olivier C, Lowery T, Stobbs L, Galka B, Bittner L, Vickers T (2007) Phytoplasma diseases in Canadian vineyards. Can J Plant Pathol 29:447Google Scholar
  103. Ortega-Lopez V, Amo-Salas M, Ortiz-Barredo A, Diez-Navajas AM (2014) Male flight phenology of the European grapevine moth Lobesia botrana (Lepidoptera: Tortricidae) in different wine-growing regions in Spain. Bull Entomol Res 104:566–575. doi: 10.1017/s0007485314000339 PubMedCrossRefGoogle Scholar
  104. Pangga IB, Hanan J, Chakraborty S (2013) Climate change impacts on plant canopy architecture: implications for pest and pathogen management. Eur J Plant Pathol 135:595–610. doi: 10.1007/s10658-012-0118-y CrossRefGoogle Scholar
  105. Papura D, Delmotte F, Giresse X, Salar P, Danet JL, Van Helden M, Foissac X, Malembic-Maher S (2009) Comparing the spatial genetic structures of the flavescence dorée phytoplasma and its leafhopper vector Scaphoideus titanus. Infect Genet Evol 8:534–540Google Scholar
  106. Papura D, Burban C, van Helden M, Giresse X, Nusillard B, Guillemaud T, Kerdelhue C (2012) Microsatellite and mitochondrial data provide evidence for a single major introduction for the neartic leafhopper Scaphoideus titanus in Europe. PLoS One 7:e36882. doi: 10.1371/journal.pone.0036882 PubMedPubMedCentralCrossRefGoogle Scholar
  107. Parmesan C (2006) Ecological and evolutionary responses to recent climate change. Annu Rev Ecol Evol Syst 37:637–669. doi: 10.1146/annurev.ecolsys.37.091305.110100 CrossRefGoogle Scholar
  108. Parmesan C, Ryrholm N, Stefanescu C, Hillk JK, Thomas CD, Descimon H, Huntleyk B, KailaI L, KullbergI J, Tammaru T, Tennent WJ, Thomas JA, Warren M (1999) Poleward shifts in geographical ranges of butterfly species associated with regional warming. Nature 399:579–583CrossRefGoogle Scholar
  109. Penuelas J, Filella I (2001) Responses to a warming world. Science 294:793–795PubMedCrossRefGoogle Scholar
  110. Perrings C, Dehnen-Schmutz K, Touza J, Williamson M (2005) How to manage biological invasions under globalization. Trends Ecol Evol 20:212–215. doi: 10.1016/j.tree.2005.02.011 PubMedCrossRefGoogle Scholar
  111. Ponton F, Wilson K, Cotter SC, Raubenheimer D, Simpson SJ (2011) Nutritional immunology: a multi-dimensional approach. PLoS Pathog 7:e1002223. doi: 10.1371/journal.ppat.1002223 PubMedPubMedCentralCrossRefGoogle Scholar
  112. Pritchard SG, Rogers HH, Prior SA, Peterson CM (1999) Elevated CO2 and plant structure: a review. Glob Change Biol 5:807–837CrossRefGoogle Scholar
  113. Pugliese M, Gullino ML, Garibaldi A (2010) Effects of elevated CO2 and temperature on interactions of grapevine and powdery mildew: first results under phytotron conditions. J Plant Dis Prot 117:9–14CrossRefGoogle Scholar
  114. Rathe AA, Pilkington LJ, Gurr GM, Hoddle MS, Daugherty MP, Constable FE, Luck JE, Powell KS, Fletcher MJ, Edwards OR (2012) Incursion preparedness: anticipating the arrival of an economically important plant pathogen Xylella fastidiosa Wells (Proteobacteria: Xanthomonadaceae) and the insect vector Homalodisca vitripennis (Germar) (Hemiptera: Cicadellidae) in Australia. Aust J Entomol 51:209–220. doi: 10.1111/j.1440-6055.2011.00856.x CrossRefGoogle Scholar
  115. Redak RA, Purcell AH, Lopes JRS, Blua MJ, Mizell RF, Andersen PC (2004) The biology of xylem fluid-feeding insect vectors of Xylella fastidiosa and their relation to disease epidemiology. Annu Rev Entomol 49:243–270. doi: 10.1146/annurev.ento.49.061802.123403 PubMedCrossRefGoogle Scholar
  116. Reznik SY, Voinovich ND, Vaghina NP (2009) Effect of temperature on the reproduction and development of Trichogramma buesi (Hymenoptera: Trichogrammatidae). Eur J Entomol 106:535–544CrossRefGoogle Scholar
  117. Ribaut H (1952) Homoptères Auchenorhynques II (Jassidae), Vol 57. Faune de France, vol 57. Fédération Française des Sciences Naturelles, ParisGoogle Scholar
  118. Robinson EA, Ryan GD, Newman JA (2012) A meta-analytical review of the effects of elevated CO2 on plant-arthropod interactions highlights the importance of interacting environmental and biological variables. New Phytol 194:321–336. doi: 10.1111/j.1469-8137.2012.04074.x PubMedCrossRefGoogle Scholar
  119. Roditakis NE, Karandinos MG (2001) Effects of photoperiod and temperature on pupal diapause induction of grape berry moth Lobesia botrana. Physiol Entomol 26:329–340CrossRefGoogle Scholar
  120. Roehrich R, Boller E (1991) Tortricids in Vineyards. In: Van der Geest LPS, Evenhuis HH (eds) Tortricid pests. Their biology, natural enemies and control. Elsevier Science Publishers, Amsterdam, pp 507–514Google Scholar
  121. Rogiers SY, Hardie WJ, Smith JP (2011) Stomatal density of grapevine leaves (Vitis vinifera L.) responds to soil temperature and atmospheric carbon dioxide. Aust J Grape Wine R 17:147–152. doi: 10.1111/j.1755-0238.2011.00124.x CrossRefGoogle Scholar
  122. Roll M, Johnson R, Masters C, Green M (2007) First report of Bois noir phytoplasma in grapevine in Canada. Plant Dis 91:1682. doi: 10.1094/pdis-91-12-1682a Google Scholar
  123. Salazar Parra C, Aguirreolea J, Sánchez-Díaz M, Irigoyen J, Morales F (2010) Effects of climate change scenarios on Tempranillo grapevine (Vitis vinifera L.) ripening: response to a combination of elevated CO2 and temperature, and moderate drought. Plant Soil 337:179–191. doi: 10.1007/s11104-010-0514-z CrossRefGoogle Scholar
  124. Salazar-Parra C, Aguirreolea J, Sanchez-Diaz M, Irigoyen JJ, Morales F (2012) Photosynthetic response of Tempranillo grapevine to climate change scenarios. Ann Appl Biol 161:277–292. doi: 10.1111/j.1744-7348.2012.00572.x CrossRefGoogle Scholar
  125. Schultz HR, Jones GV (2010) Climate induced historic and future changes in viticulture. J Wine Res 21:137–145. doi: 10.1080/09571264.2010.530098 CrossRefGoogle Scholar
  126. Schultz HR, Stoll M (2010) Some critical issues in environmental physiology of grapevines: future challenges and current limitations. Aust J Grape Wine R 16:4–24. doi: 10.1111/j.1755-0238.2009.00074.x CrossRefGoogle Scholar
  127. Seem RC (2004) Forecasting plant disease in a changing climate: a question of scale. Can J Plant Pathol 26:274–283CrossRefGoogle Scholar
  128. Seljak G (1987) Scaphoideus titanus Ball (=Sc. littoralis Ball), novi stetnik vinove loze u Jugoslaviji. Zast Bilja 38:349–357Google Scholar
  129. Siva-Jothy MT, Moret Y, Rolff J (2005) Insect immunity: an evolutionary ecology perspective. In: Simpson SJ (ed) Advances in insect physiology, vol 32. Academic Press, New York, pp 1–48Google Scholar
  130. Steffek R, Reisenzein H, Zeisner N (2007) Analysis of the pest risk from grapevine flavescence dorée phytoplasma to Austrian viticulture. Bull OEPP/EPPO Bull 37:191–203CrossRefGoogle Scholar
  131. Stoeckli S, Hirschi M, Spirig C, Calanca P, Rotach MW, Samietz J (2012) Impact of climate change on voltinism and prospective diapause induction of a global pest insect—Cydia pomonella (L.). PLoS One 7:e35723. doi: 10.1371/journal.pone.0035723 PubMedPubMedCentralCrossRefGoogle Scholar
  132. Svobodova E, Trnka M, Dubrovsky M, Semeradova D, Eitzinger J, Stepanek P, Zalud Z (2014) Determination of areas with the most significant shift in persistence of pests in Europe under climate change. Pest Manag Sci 70:708–715. doi: 10.1002/ps.3622 PubMedCrossRefGoogle Scholar
  133. Thiéry D (2005) Vers de la grappe: Les connaître pour s’en protéger. Série Guides pratiques. INRA Bordeaux, Editions Vigne et Vin International Bordeaux. doi: 10.13140/2.1.4772.8964 Google Scholar
  134. Thiéry D, Rétaud P, Cavard X, Xuéreb A, Dumas-Lattaque L, Bourriau F (2006) Trapping Lobesia botrana females with apple juice: a valuable tool to predict oviposition? IOBC/WPRS Bull 29:235–240Google Scholar
  135. Thiéry D, Delbac L, Villemant C, Moreau J (2011) Control of grape berry moth larvae using parasitoids: should it be developed? IOBC/WPRS Bulletin 67:189–196Google Scholar
  136. Thiéry D, Monceau K, Moreau J (2014) Different emergence phenology of European grapevine moth (Lobesia botrana, Lepidoptera: Tortricidae) on six varieties of grapes. Bull Entomol Res 104:277–287. doi: 10.1017/S000748531300031X PubMedCrossRefGoogle Scholar
  137. Thomson LJ, Macfadyen S, Hoffmann AA (2010) Predicting the effects of climate change on natural enemies of agricultural pests. Biol Control 52:296–306CrossRefGoogle Scholar
  138. Timm AE, Reineke A (2014) First insights into grapevine transcriptional responses as a result of vine mealybug Planococcus ficus feeding. Arthropod Plant Interact 8:495–505. doi: 10.1007/s11829-014-9340-1 Google Scholar
  139. Tobin PC, Nagarkatti S, Loeb G, Saunders MC (2008) Historical and projected interactions between climate change and insect voltinism in a multivoltine species. Glob Change Biol 14:951–957. doi: 10.1111/j.1365-2486.2008.01561.x CrossRefGoogle Scholar
  140. Torres-Vila LM, Rodriguez-Molina MC, Roehrich R, Stockel J (1999) Vine phenological stage during larval feeding affects male and female reproductive output of Lobesia botrana (Lepidoptera: Tortricidae). Bull Entomol Res 89:549–556CrossRefGoogle Scholar
  141. van Asch M, Visser ME (2007) Phenology of forest caterpillars and their host trees: the importance of synchrony. Annu Rev Entomol 52:37–55PubMedCrossRefGoogle Scholar
  142. van Leeuwen C, Schultz HR, Garcia de Cortazar-Atauri I, Duchêne E, Ollat N, Pieri P, Bois B, Goutouly J-P, Quénol H, Touzard J-M, Malheiro AC, Bavaresco L, Delrot S (2013) Why climate change will not dramatically decrease viticultural suitability in main wine-producing areas by 2050. Proc Natl Acad Sci USA 110:E3051–E3052. doi: 10.1073/pnas.1307927110 PubMedPubMedCentralCrossRefGoogle Scholar
  143. Visser ME, Holleman LJM (2001) Warmer springs disrupt the synchrony of oak and winter moth phenology. Proc R Soc Lond B 268:289–294CrossRefGoogle Scholar
  144. Vogelweith F, Thiéry D, Quaglietti B, Moret Y, Moreau J (2011) Host plant variation plastically impacts different traits of the immune system of a phytophagous insect. Funct Ecol 25:1241–1247. doi: 10.1111/j.1365-2435.2011.01911.x CrossRefGoogle Scholar
  145. Vogelweith F, Moret Y, Thiéry D, Moreau J (2013) Lobesia botrana larvae develop faster in the presence of parasitoids. PLoS One. doi: 10.1371/journal.pone.0072568 PubMedPubMedCentralGoogle Scholar
  146. Vogelweith F, Thiéry D, Moret Y, Colin E, Motreuil S, Moreau J (2014) Defense strategies used by two sympatric vineyard moth pests. J Insect Physiol 64:54–61. doi: 10.1016/j.jinsphys.2014.03.009 PubMedCrossRefGoogle Scholar
  147. Walton V, Daane K, Addison P (2012) Biological control of arthropods and its application in vineyards. In: Bostanian NJ, Vincent C, Isaacs R (eds) Arthropod management in Vineyards: pests, approaches, and future directions. Springer, Dordrecht, pp 91–117CrossRefGoogle Scholar
  148. White MA, Diffenbaugh NS, Jones GV, Pal JS, Giorgi F (2006) Extreme heat reduces and shifts United States premium wine production in the 21st century. Proc Natl Acad Sci USA 103:11217–11222. doi: 10.1073/pnas.0603230103 PubMedPubMedCentralCrossRefGoogle Scholar
  149. Williams DW, Liebhold AM (2002) Climate change and the outbreack ranges of two North American bark beetles. Agric For Entomol 4:87–99CrossRefGoogle Scholar
  150. Wu J, Baldwin IT (2010) New insights into plant responses to the attack from insect herbivores. Annu Rev Genet 44:1–24. doi: 10.1146/annurev-genet-102209-163500 PubMedCrossRefGoogle Scholar
  151. Xuéreb A, Thiéry D (2006) Does natural larval parasitism of Lobesia botrana (Lepidoptera: Tortricidae) vary between years, generation, density of the host and vine cultivar? Bull Entomol Res 96:105–110PubMedCrossRefGoogle Scholar
  152. Yuan JS, Himanen SJ, Holopainen JK, Chen F, Stewart CN Jr (2009) Smelling global climate change: mitigation of function for plant volatile organic compounds. Trends Ecol Evol 24:323–331. doi: 10.1016/j.tree.2009.01.012 PubMedCrossRefGoogle Scholar
  153. Zavala JA, Nabity PD, DeLucia EH (2013) An emerging understanding of mechanisms governing insect herbivory under elevated CO2. Annu Rev Entomol 58:79–97. doi: 10.1146/annurev-ento-120811-153544 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of PhytomedicineGeisenheim UniversityGeisenheimGermany
  2. 2.INRA, UMR 1065 Santé et Agroécologie du Vignoble, Bordeaux Sciences Agro, ISVVVillenave d’Ornon CedexFrance

Personalised recommendations