Journal of Pest Science

, Volume 89, Issue 3, pp 605–619 | Cite as

Biotic and abiotic factors impacting development, behavior, phenology, and reproductive biology of Drosophila suzukii

  • Kelly A. HambyEmail author
  • David E. Bellamy
  • Joanna C. Chiu
  • Jana C. Lee
  • Vaughn M. Walton
  • Nik G. Wiman
  • Riki M. York
  • Antonio Biondi


Spotted wing drosophila, Drosophila suzukii, is a devastating invasive pest of small and stone fruits in the Americas and Europe. To better understand the population dynamics of D. suzukii, we reviewed recent work on juvenile development, adult reproduction, and seasonal variation in life history parameters including the abiotic/biotic factors that influence these processes. Juvenile development is optimal at moderately warm temperatures, and larvae exhibit some immunity to parasitism. Adults use visual cues and substrate-borne vibrations for courtship and exhibit a bimodal locomotor activity pattern (except mated females). Under 20–27 °C and various conditions, development from egg to adult can take 10–17 days, females first lay eggs within 1–8 days and their lifetime fecundity varies from <100 to >400. Oviposition is consistently high in raspberry hosts and fruits with lower penetration force, and the presence of Wolbachia endosymbionts can lower fertility. Drosophila suzukii exhibit seasonal variation with a darker winter morph that is more cold tolerant. Also, D. suzukii likely undergo reproductive diapause in the fall, with colder temperatures and shorter day lengths influencing reproduction. To develop viable IPM programs for D. suzukii, knowledge of abiotic and biotic conditions that impact D. suzukii life history parameters and population dynamics is critical, and gaps in the current knowledge are discussed.


Invasive species Chronobiology Development Overwintering Reproduction Spotted wing drosophila 



We thank Adam Cave, Christina Fieland, and Amanda Lake, USDA-ARS Corvalis, OR, and Daniel Dalton, Oregon State University, for assistance and rearing of D. suzukii used in assays. We thank Nathalie Steinhauer, University of Maryland, for translating Chabert et al. (2013). We thank Dennis Margosan, USDA-ARS Parlier, CA, for his SEM images. Funding was provided by the USDA SCRI Grant 2010-51181-21167, and USDA CRIS 5358-22000-037-00D. Antonio Biondi received funding from the People Programme (Marie Curie Actions) of the European Union’s Seventh Framework Programme FP7/2007-2013/under REA grant agreement 318246, and from the Italian Ministry of Education, University and Research (PRIN project GEISCA, 2010CXXHJE_004, and SIR project ENTOBIONANO, RBSI14I02A).

Supplementary material

10340_2016_756_MOESM1_ESM.docx (757 kb)
Supplementary material 1 (DOCX 757 kb)


  1. Asplen MK, Anfora G, Biondi A, Choi D-S, Chu D et al (2015) Invasion biology of spotted wing Drosophila (Drosophila suzukii): a global perspective and future priorities. J Pest Sci 88:469–494. doi: 10.1007/s10340-015-0681-z CrossRefGoogle Scholar
  2. Atallah J, Teixeira L, Salazar R, Zaragoza G, Kopp A (2014) The making of a pest: the evolution of a fruit-penetrating ovipositor in Drosophila suzukii and related species. Proc R Soc B 281:20132840. doi: 10.1098/rspb.2013.2840 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Austin AD, Browing TO (1981) A mechanism for movement of eggs along insect ovipositors. Int J Insect Morphol 10:93–108. doi: 10.1016/S0020-7322(81)80015-3 CrossRefGoogle Scholar
  4. Awmack CS, Leather SR (2002) Host plant quality and fecundity in herbivorous insects. Annu Rev Entomol 47:817–844. doi: 10.1146/annurev.ento.47.091201.145300 CrossRefPubMedGoogle Scholar
  5. Becher PG, Flick G, Rozpędowska E, Schmidt A, Hagman A, Lebreton S, Larsson MC, Hansson BS, Piškur J, Witzgall P, Bengtsson M (2012) Yeast, not fruit volatiles mediate Drosophila melanogaster attraction, oviposition and development. Funct Ecol 26:822–828CrossRefGoogle Scholar
  6. Bellamy DE, Sisterson MS, Walse SS (2013) Quantifying host potentials: indexing postharvest fresh fruits for spotted wing drosophila, Drosophila suzukii. PLoS One 8:e61227. doi: 10.1371/journal.pone.0061227 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Burrack HJ, Smith J, Powell J, Pfeiffer DG, Koeher G, Laforest J (2012) Using volunteer-based networks to track Drosophila suzukii (Diptera: Drosophilidae) an invasive pest of fruit crops. J Integr Pest Manag 3:B1–B5. doi: 10.1603/IPM12012 CrossRefGoogle Scholar
  8. Burrack HJ, Fernandez GE, Spivey T, Kraus DA (2013) Variation in selection and utilization of host crops in the field and laboratory by Drosophila suzukii Matsumara (Diptera: Drosophilidae), and invasive frugivore. Pest Manag Sci 69:1173–1180. doi: 10.1002/ps.3489 CrossRefPubMedGoogle Scholar
  9. Caminade C, Medlock JM, Ducheyne E, McIntyre KM, Leach S, Baylis M, Morse AP (2012) Suitability of European climate for the Asian tiger mosquito Aedes albopictus; recent trends and future scenarios. J R Soc Interface 9:2708–2717. doi: 10.1098/rsif.2012.0138 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Carton Y, Poirie M, Nappi AJ (2008) Insect immune resistance to parasitoids. Insect Sci 15:67–87. doi: 10.1111/j.1744-7917.2008.00188.x CrossRefGoogle Scholar
  11. Chabert S, Allemand R, Poyet M, Eslin P, Gibert P (2012) Ability of European parasitoids (Hymenoptera) to control a new invasive Asiatic pest, Drosophila suzukii. Biol Control 63:40–47. doi: 10.1016/j.biocontrol.2012.05.005 CrossRefGoogle Scholar
  12. Chabert S, Allemand R, Pyet M, Ris N, Gibert P (2013) Drosophila suzukii, versune lute biologique contre ce ravageur des fruits rouges. Phytoma 660:34–38Google Scholar
  13. Chandler JA, James PM, Jospin G, Lang JM (2014) The bacterial communities of Drosophila suzukii collected from undamaged cherries. PeerJ 2:e474. doi: 10.7717/peerj.474 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Cini A, Anfora G, Escudero-Colomar LA, Grassi A, Santosuosso U, Seljak G, Papini A (2014) Tracking the invasion of the alien fruit pest Drosophila suzukii in Europe. J Pest Sci 87:559–566CrossRefGoogle Scholar
  15. Daane KM, Wang XG, Biondi A, Miller JC, Miller B, Miller JC, Reidl H, Shearer PW, Guerrieri E, Giorgini M, Buffington M, van Achterberg K, Song Y, Kang T, Yi H, Jung C, Lee DW, Chung B-K, Hoelmer KA, Walton VM (2016) First exploration of parasitoids of Drosophila suzukii in South Korea as potential classical biological agents. J Pest Sci. doi: 10.1007/s10340-016-0740-0 Google Scholar
  16. Dalton DT, Walton VM, Shearer PW, Walsh DB, Caprile J, Isaacs R (2011) Laboratory survival of Drosophila suzukii under simulated winter conditions of the Pacific Northwest and seasonal field trapping in five primary regions of small and stone fruit production in the United States. Pest Manag Sci 67:1368–1374. doi: 10.1002/ps.2280 CrossRefPubMedGoogle Scholar
  17. Dekker T, Revadi S, Mansourian S, Tamasamy S, Lebreton S, Becher PG, Angeli S, Rota-Stabelli O, Anfora G (2015) Loss of Drosophila pheromone reverses its role in sexual communication in Drosophila suzukii. Proc R Soc B 282:20142018. doi: 10.1098/rspb.2014.3018 CrossRefGoogle Scholar
  18. Deprá M, Poppe JL, Schmitz HJ, De Toni DC, Valente VL (2014) The first records of the invasive pest Drosophila suzukii in the South American continent. J Pest Sci 87:379–383CrossRefGoogle Scholar
  19. Emiljanowicz LM, Ryan GD, Langille A, Newman J (2014) Development, reproductive output and population growth of the fruit fly pest Drosophila suzukii (Diptera: Drosophilidae) on artificial diet. J Econ Entomol 107:1392–1398. doi: 10.1603/EC13504 CrossRefPubMedGoogle Scholar
  20. Ferguson CTJ, O’Neill TL, Audsley N, Isaac RE (2015) The sexual dimorphic behavior of adult Drosophila suzukii: elevated female locomotor activity and loss of siesta is a post-mating response. J Exp Biol. doi: 10.1242/jeb.125468 Google Scholar
  21. Ferro DN (1987) Insect pest outbreaks in agroecosystems. In: Barbosa P, Schultz JC (eds) Insect outbreaks. Academic Press Inc, San Diego, pp 195–212Google Scholar
  22. Fuyama Y (1979) A visual stimulus in the courtship of Drosophila suzukii. Experientia 35:1327–1328CrossRefGoogle Scholar
  23. Good T, Tatar M (2001) Age-specific mortality and reproduction response to adult dietary restriction in Drosophila melanogaster. J Insect Physiol 47:1467–11473CrossRefPubMedGoogle Scholar
  24. Hamby KA, Becher PG (2016) Current knowledge of interactions between Drosophila suzukii and microbes, and their potential utility for pest management. J Pest Sci (submitted)Google Scholar
  25. Hamby KA, Hernández A, Boundy-Mills K, Zalom FG (2012) Yeast associations of spotted wing drosophila (Drosophila suzukii, Diptera: Drosophilidae) in cherries and raspberries. Appl Environ Microb 78:4869–4873. doi: 10.1128/AEM.00841-12 CrossRefGoogle Scholar
  26. Hamby KA, Kwok RS, Zalom FG, Chiu JC (2013) Integrating circadian activity and gene expression profiles to predict chronotoxicity of Drosophila suzukii response to insecticides. PLoS One 8:e68472. doi: 10.1371/journal.pone.0068472 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Hamm CA, Begun DJ, Vo A, Smith CCR, Saelao P, Shaver AO, Jaenike J, Turelli M (2014) Wolbachia do not live by reproductive manipulation alone: infection polymorphism in Drosophila suzukii and D. subpulchrella. Mol Ecol 23:4871–4885. doi: 10.1111/mec.12901 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Hardin JA, Kraus DA, Burrack HJ (2015) Diet quality mitigates intraspecific larval competition in Drosophila suzukii. Entomol Exp Appl 56:59–65. doi: 10.1111/eea.12311 CrossRefGoogle Scholar
  29. Harris DW, Hamby KA, Wilson HE, Zalom FG (2014) Seasonal monitoring of Drosophila suzukii (Diptera: Drosophilidae) in a mixed fruit production system. J Asia Pac Entomol 17:857–864. doi: 10.1016/j.aspen.2014.08.006 CrossRefGoogle Scholar
  30. Hauser M (2011) A historic account of the invasion of Drosophila suzukii (Matsumura) (Diptera: Drosophilidae) in the continental United States, with remarks on their identification. Pest Manag Sci 67:1352–1357. doi: 10.1002/ps.2265 CrossRefPubMedGoogle Scholar
  31. Haye T, Gariepy T, Hoelmer K, Rossi JP, Streito JC, Tassus X, Desneux N (2015) Range expansion of the invasive brown marmorated stinkbug, Halyomorpha halys: an increasing threat to field, fruit and vegetable crops worldwide. J Pest Sci 88:665–673. doi: 10.1007/s10340-015-0670-2 CrossRefGoogle Scholar
  32. Haye T, Girod P, Cuthbertson AGS, Wang XG, Daane KM, Hoelmer KA, Baroffio C, Zhang JP, Desneux N (2016) Current SWD IPM tactics and their practical implementation in fruit crops across different regions around the world. J Pest Sci. doi: 10.1007/s10340-016-0737-8 Google Scholar
  33. Ioriatti C, Walton VM, Dalton DT, Anfora G, Grassi A, Maistri S, Mazzoni V (2015) Drosophila suzukii (Diptera: Drosophilidae) and its potential impact to wine grapes during harvest in two cool climate wine grape production regions. J Econ Entomol 108:1148–1155CrossRefPubMedGoogle Scholar
  34. Jakobs R, Gariepy TD, Sinclair BJ (2015) Adult plasticity of cold tolerance in a continental-temperate population of Drosophila suzukii. J Insect Physiol 79:1–9. doi: 10.1016/j.jinsphys.2015.05.003 CrossRefPubMedGoogle Scholar
  35. Jaramillo SL, Mehlferber E, Moore PJ (2015) Life-history trade-offs under different larval diets in Drosophila suzukii (Diptera: Drosophilidae). Physiol Entomol 40:2–9. doi: 10.1111/phen.12082 CrossRefGoogle Scholar
  36. Kaçar G, Wang X, Stewart TJ, Daane KM (2016) Overwintering survival of Drosophila suzukii (Diptera: Drosophilidae) and the effect of food on adult survival in California’s San Joaquin Valley. Environ Entomol. doi: 10.1093/ee/nvv182 Google Scholar
  37. Kacsoh BZ, Schlenke TA (2012) High hemocyte load is associated with increased resistance against parasitoids in Drosophila suzukii, a relative of D. melanogaster. PLoS One 7:e34721. doi: 10.1371/journal.pone.0034721 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Katayama N, Abbott JK, Kjærandsen J, Takahashi Y, Svensson EI (2014) Sexual selection on wing interference patterns in Drosophila melanogaster. PNAS 111:15144–15148. doi: 10.1073/pnas.1407595111 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Kellermann V, Loeschcke V, Hoffmann AA, Kristensen TN, Fløjgaard C, David JR, Svenning JC, Overgaard J (2012) Phylogenetic constraints in key functional traits behind species’ climate niches: patterns of desiccation and cold resistance across 95 Drosophila species. Evolution 66:3377–3389. doi: 10.1111/j.1558-5646.2012.01685.x CrossRefPubMedGoogle Scholar
  40. Kimura MT, Beppu K (1993) Climatic adaptations in the Drosophila immigrans group: seasonal migration and thermal tolerance. Ecol Entomol 18:141–149. doi: 10.1111/j.1365-2311.1993.tb01195.x CrossRefGoogle Scholar
  41. Kinjo H, Kunimi Y, Nakai M (2014) Effects of temperature on the reproduction and development of Drosophila suzukii (Diptera: Drosophilidae). Appl Entomol Zool 49:297–304. doi: 10.1007/s13355-014-0249-z CrossRefGoogle Scholar
  42. Kopp A, True JR (2002) Evolution of male sexual characters in the oriental Drosophila melanogaster species group. Evol Dev 4:278–291. doi: 10.1046/j.1525-142X.2002.02017.x CrossRefPubMedGoogle Scholar
  43. Lee JC, Bruck DJ, Curry H, Edwards D, Haviland DR, Van Steenwyk RA, Yorgey BM (2011) The susceptibility of small fruits and cherries to the spotted-wing drosophila, Drosophila suzukii. Pest Mang Sci 67:1358–1367. doi: 10.1002/ps.2225 CrossRefGoogle Scholar
  44. Lee JC, Dalton DT, Swoboda-Bhattarai KA, Bruck DJ, Burrack HJ, Strik BC, Woltz JM, Walton VM (2015a) Characterization and manipulation of fruit susceptibility to Drosophila suzukii. J Pest Sci. doi: 10.1007/s10340-015-0692-9 Google Scholar
  45. Lee JC, Dreves AJ, Cave AM, Kawai S, Isaacs R, Miller JC, Van Timmeren S, Bruck DJ (2015b) Infestation of wild and ornamental noncrop fruits by Drosophila suzukii (Diptera: Drosophilidae). Ann Entomol Soc Am 108:117–129. doi: 10.1093/aesa/sau014 CrossRefGoogle Scholar
  46. Lee JC, Shearer PW, Barrantes LD, Beers EH, Burrack HJ, Dalton DT, Dreves AJ, Gut LJ, Hamby KA, Haviland DR, Isaacs R, Nielsen AL, Richardson T, Rodriguez-Saona CR, Stanley CA, Walsh DB, Walton VM, Yee WL, Zalom FG, Bruck DJ (2013) Trap designs for monitoring Drosophila suzukii (Diptera: Drosophilidae). Environ Entomol 42:1348–1355Google Scholar
  47. Lin Q-C, Zhai Y-F, Zhang A-S, Men X-Y, Zhang X-Y, Zalom FG, Zhou C-G, Yu Y (2014a) Comparative developmental times and laboratory life tables for Drosophlia suzukii and Drosophila melanogaster (Diptera: Drosophilidae). Fla Entomol 97:1434–1442. doi: 10.1653/024.097.0418 CrossRefGoogle Scholar
  48. Lin Q-C, Zhai Y-F, Zhou C-G, Li L-L, Zhuang Q-Y, Zhang X-Y, Zalom FG, Yu Y (2014b) Behavioral rhythms of Drosophila suzukii and Drosophila melanogaster. Fla Entomol 97:1424–1433. doi: 10.1653/024.097.0417 CrossRefGoogle Scholar
  49. Mazzetto F, Pansa MG, Ingegno BL, Tavella L, Alma A (2015) Monitoring of the exotic fly Drosophila suzukii in stone, pome and soft fruit orchards in NW Italy. J Asia Pac Entomol 18:321–329CrossRefGoogle Scholar
  50. Mazzetto F, Marchetti E, Sacco D, Francati S, Jucker C, Lupi D, Tavella L (2016) Drosophila parasitoids in northern Italy and their potential to attack the exotic pest Drosophila suzukii. J Pest Sci. doi: 10.1007/s10340-016-0746-7 Google Scholar
  51. Mazzoni V, Anfora G, Virant-Doberlet M (2013) Substrate vibrations during courtship in three Drosophila species. PLoS One 8:e80708. doi: 10.1371/journal.pone.0080708 CrossRefPubMedPubMedCentralGoogle Scholar
  52. Miller B, Anfora G, Buffington M, Daane KM, Dalton DT, Hoelmer KM, Rossi Stacconi MV, Grassi A, Ioriatti C, Loni A, Miller JC, Ouantar M, Wang X, Wiman NG, Walton VM (2015) Seasonal occurrence of resident parasitoids associated with Drosophila suzukii in two small fruit production regions of Italy and the USA. B Insectol 68:255–263Google Scholar
  53. Min K-J, Hogan MF, Tatar M, O’Brien DM (2006) Resource allocation to reproduction and soma in Drosophila: a stable isotope analysis of carbon from dietary sugar. J Insect Physiol 52:763–770. doi: 10.1016/j.jinsphys.2006.04.004 CrossRefPubMedGoogle Scholar
  54. Mitsui H, Beppu K, Kimura MT (2010) Seasonal life cycles and resource uses of flower- and fruit-feeding drosophilid flies (Diptera: Drosophilidae) in central Japan. Entomol Sci 13:60–67CrossRefGoogle Scholar
  55. Monceau K, Bonnard O, Thiéry D (2014) Vespa velutina: a new invasive predator of honeybees in Europe. J Pest Sci 87:1–16. doi: 10.1007/s10340-013-0537-3 CrossRefGoogle Scholar
  56. Nomano FY, Mitsui H, Kimura MT (2015) Capacity of Japanese Asobara species (Hymenoptera; Braconidae) to parasitize a fruit pest Drosophila suzukii (Diptera; Drosophilidae). J Appl Entomol 139:105–113CrossRefGoogle Scholar
  57. Pimentel D (1993) Habitat factors in new pest invasions. In: Kim KC, McPheron BA (eds) Evolution of insect pests—patterns of variation. Wiley, New York, pp 165–181Google Scholar
  58. Pimentel D, Zuniga R, Morrisonn D (2005) Update on the environmental and economic costs associated with alien-invasive species in the United States. Ecol Econ 52:273–288. doi: 10.1016/j.ecolecon.2004.10.002 CrossRefGoogle Scholar
  59. Revadi S, Lebreton S, Witzgall P, Anfora G, Dekker T, Becher PG (2015) Sexual behavior of Drosophila suzukii. Insects 6:183–196. doi: 10.3390/insects6010183 CrossRefPubMedPubMedCentralGoogle Scholar
  60. Rossi Stacconi MV, Grassi A, Dalton DT, Miller B, Ouantar M, Loni A, Ioriatti C, Walton VM, Anfora G (2013) First field records of Pachycrepoideus vindemiae as a parasitoid of Drosophila suzukii in European and Oregon small fruit production areas. Entomologia 1:11–16. doi: 10.4081/entomologia.2013.e3 CrossRefGoogle Scholar
  61. Rossi Stacconi MV, Buffington M, Daane KM, Dalton DT, Grassi A, Kaçar G, Miller B, Miller JC, Baser N, Ioriatti C, Walton VM, Wiman NG, Wang X, Anfora G (2015) Host stage preference, efficacy and fecundity of parasitoids attacking Drosophila suzukii in newly invaded areas. Biol Control 84:28–35. doi: 10.1016/j.biocontrol.2015.02.003 CrossRefGoogle Scholar
  62. Salminen TS, Vesala L, Laiho A, Merisalo M, Hoikkala A, Kankare M (2015) seasonal gene expression kinetics between diapause phases in Drosophila virilis group species and overwintering differences between diapausing and non-diapausing females. Sci Rep 5:11197. doi: 10.1038/srep11197 CrossRefPubMedPubMedCentralGoogle Scholar
  63. Schmidt PS, Paaby AB (2008) Reproductive diapause and life-history clines in North American populations of Drosophila melanogaster. Evolution 62:1204–1215. doi: 10.1111/j.1558-5646.2008.00351.x CrossRefPubMedGoogle Scholar
  64. Schmidt PS, Matzkin LM, Ippolito M, Eanes WF (2005) Geographic variation in diapause incidence, life history traits, and climatic adaptation in Drosophila melanogaster. Evolution 59:1721–1732. doi: 10.1111/j.0014-3820.2005.tb01821.x CrossRefPubMedGoogle Scholar
  65. Sexton R, Palmer JM, Whyte NA, Littlejohns S (1997) Cellulase, fruit softening, and abscission in red raspberry Rubus ideaeus L. cv Glen Clova. Ann Bot 80:371–376. doi: 10.1006/anbo.1997.0465 CrossRefGoogle Scholar
  66. Shearer PW, West JD, Walton VM, Brown PH, Svetec N, Chiu JC (2016) Seasonal cues induce phenotypic plasticity of Drosophila suzukii to enhance winter survival. BMC Ecol 16:11. doi: 10.1186/s12898-016-0070-3 CrossRefPubMedPubMedCentralGoogle Scholar
  67. Shevtsova E, Hansson C, Janzen DH, Kjærandsen J (2011) Stable structural color patterns displayed on transparent insect wings. PNAS 108:668–673. doi: 10.1073/pnas.1017393108 CrossRefPubMedPubMedCentralGoogle Scholar
  68. Siozios S, Cestaro A, Kaur R, Pertot I, Rota-Stabelli O, Anfora G (2013) Draft genome sequence of the Wolbachia endosymbiont of Drosophila suzukii. Genome Announc 1:e00032-13. doi: 10.1128/genomeA.00032-13 CrossRefPubMedPubMedCentralGoogle Scholar
  69. Sokolowski MB, Kent C, Wong J (1984) Drosophila larval foraging behaviour: developmental stages. Anim Behav 32:645–651CrossRefGoogle Scholar
  70. Stahl K, Moore RD, McKendry IG (2006) Climatology of winter cold spells in relation to mountain pine beetle mortality in British Columbia, Canada. Clim Res 32:13–23. doi: 10.3354/cr032013 CrossRefGoogle Scholar
  71. Stephens AR, Asplen MK, Hutchinson WD, Venette RC (2015) Cold hardiness of winter-acclimated Drosophila suzukii (Diptera: Drosophilidae) adults. Environ Entomol 44:1619–1626. doi: 10.1093/ee/nvv134 CrossRefPubMedGoogle Scholar
  72. Stewart TJ, Wang X-G, Molinar A, Daane KM (2014) Factors limiting peach as a potential host for Drosophila suzukii (Diptera: Drosophilidae). J Econ Entomol 107:1771–1779. doi: 10.1603/EC14197 CrossRefPubMedGoogle Scholar
  73. Tatar M, Chien S, Priest NK (2001) Negligible senescence during reproductive dormancy in Drosophila melanogaster. Am Nat 158:248–258. doi: 10.1086/321320 CrossRefPubMedGoogle Scholar
  74. Tatum EL (1939) Nutritional requirements of Drosophila melanogaster. Proc Natl Acad Sci USA 25:490–497CrossRefPubMedPubMedCentralGoogle Scholar
  75. Tochen S, Dalton DT, Wiman N, Hamm C, Shearer PW, Walton VM (2014) Temperature-related development and population parameters for Drosophila suzukii (Diptera: Drosophilidae) on cherry and blueberry. Environ Entomol 43:501–510. doi: 10.1603/EN13200 CrossRefPubMedGoogle Scholar
  76. Tochen S, Walton VM, Lee JC (2016) Impact of floral feeding on adult Drosophila suzukii survival and nutrient status. J Pest Sci (in press)Google Scholar
  77. Tochen S, Woltz JM, Dalton DT, Lee JC, Wiman NG, Walton VM (2015) Humidity affects populations of Drosophila suzukii (Diptera: Drosophilidae) in blueberry. J Appl Entomol. doi: 10.1111/jen.12247 Google Scholar
  78. Tomaru M, Yamada H (2011) Courtship of Drosophila, with a special interest in courtship songs. Low Temp Sci 69:61–85Google Scholar
  79. Tonina L, Mori N, Giomi F, Battisti A (2016) Development of Drosophila suzukii at low temperatures in mountain areas. J Pest Sci. doi: 10.1007/s10340-016-0730-2 Google Scholar
  80. Tu MP, Tatar M (2003) Juvenile diet restriction and the aging and reproduction of adult Drosophila melanogaster. Aging Cell 2:327–333CrossRefPubMedGoogle Scholar
  81. Wallingford AK, Lee JC, Loeb GM (2016) The influence of temperature and photoperiod on the reproductive diapause and cold tolerance of spotted-wing drosophila, Drosophila suzukii (Matsumura). Entomol Exp Appl in pressGoogle Scholar
  82. Walsh DB, Bolda MP, Goodhue RE, Dreves AJ, Lee J, Bruck DJ, Walton VM, O’Neal SD, Zalom FG (2011) Drosophila suzukii (Diptera: Drosophilidae): invasive pest of ripening soft fruit expanding its geographic range and damage potential. J Integr Pest Manag 2:G1–G7. doi: 10.1603/IPM10010 CrossRefGoogle Scholar
  83. Wang XG, Kaçar G, Biondi A, Daane KM (2016a) Foraging efficiency and outcomes of interactions of two pupal parasitoids attacking the invasive spotted wing drosophila. Biol Control 96:64–71. doi: 10.1016/j.biocontrol.2016.02.004 CrossRefGoogle Scholar
  84. Wang XG, Stewart TG, Biondi A, Chavez BM, Ingels C, Caprile JA, Grant J, Walton VM, Daane KM (2016b) Population dynamics and ecology of Drosophila suzukii in Central California. J Pest Sci. doi: 10.1007/s10340-016-0747-6 Google Scholar
  85. Wiman NG, Walton VM, Dalton DT, Anfora G, Burrack HJ, Chiu JC, Daane KM, Grassi A, Miller B, Tochen S, Wang X, Ioriatti C (2014) Integrating temperature-dependent life table data into a matrix projection model for Drosophila suzukii population estimation. PLoS One 9:3106909. doi: 10.1371/journal.pone.0106909 Google Scholar
  86. Wiman NG, Dalton DT, Anfora G, Biondi A, Chiu JC, Daane KM, Gerdeman B, Gottardello A, Hamby KA, Isaacs R, Grassi A, Ioriatti C, Lee JC, Miller B, Rossi Stacconi V, Shearer PW, Tanigoshi L, Wang X, and Walton VM (2016) Drosophila suzukii population response to the environment and management strategies. J Pest Sci. doi: 10.1007/s10340-016-0757-4
  87. Zerulla FN, Schmidt S, Streitberger M, Zebitz CPW, Zelger R (2015) On the overwintering ability of Drosophila suzukii in South Tyrol. J Berry Res 5:41–48. doi: 10.3233/JBR-150089 Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Kelly A. Hamby
    • 1
    Email author
  • David E. Bellamy
    • 2
  • Joanna C. Chiu
    • 3
  • Jana C. Lee
    • 4
  • Vaughn M. Walton
    • 5
  • Nik G. Wiman
    • 6
  • Riki M. York
    • 5
  • Antonio Biondi
    • 7
  1. 1.Department of EntomologyUniversity of MarylandCollege ParkUSA
  2. 2.Agricultural ScientistOcean Spray Cranberries, Inc.AberdeenUSA
  3. 3.Department of Entomology and NematologyUniversity of California DavisDavisUSA
  4. 4.USDA-ARS Horticultural Crops Research UnitCorvallisUSA
  5. 5.Department of HorticultureOregon State UniversityCorvallisUSA
  6. 6.Department of HorticultureNorth Willamette Research and Extension CenterAuroraUSA
  7. 7.Department of Agriculture, Food and EnvironmentUniversity of CataniaCataniaItaly

Personalised recommendations