Advertisement

Journal of Pest Science

, Volume 89, Issue 4, pp 909–921 | Cite as

Mating disruption of a grapevine pest using mechanical vibrations: from laboratory to the field

  • Jernej Polajnar
  • Anna Eriksson
  • Meta Virant-Doberlet
  • Valerio MazzoniEmail author
Original Paper

Abstract

Mating disruption using mechanical vibrations is a novel idea for integrated pest management of insect pests. We present results of research on using artificial vibrational noise to prevent mate recognition and localization mediated by vibrational signals in the grapevine pest Scaphoideus titanus. Building on the proof of concept published previously, mating trials were set up in laboratory to determine the amplitude threshold for playback efficacy and reveal the mechanism of its function, while field trials were performed to validate this threshold and explore the possibility of reducing energy use by exploiting the diel pattern of this species’ mating activity. The threshold obtained in laboratory trials—15 μm/s peak amplitude—was confirmed by measurements of attenuation and insect mating in field cages at successive distances from the source. We also discovered that shutting off the disruptive noise between 1000 and 1800 h did not reduce efficacy of the method in the field, allowing energy saving in this period. The noise had an all-or-nothing effect on S. titanus mating behaviour, and we were unable to ascertain the exact mechanism of the communication breakdown, but the approach appears robust enough to merit large-scale testing in the future.

Keywords

Scaphoideus titanus Integrated pest management Vibrational noise Mating disruption Hemiptera Vineyard 

Notes

Acknowledgments

We thank Luca Nicoletti and Dr. Santosh Revadi for technical help with insect rearing and field trials, and Dr. Rodrigo Krugner for critical reading of the manuscript. This research was supported by the European Union Seventh Framework Programme (FP7/2007-2013) under the Grant agreement no. 265865.

Supplementary material

10340_2015_726_MOESM1_ESM.wav (67 kb)
Supplementary material 1 (WAV 67 kb)
10340_2015_726_MOESM2_ESM.pdf (124 kb)
Supplementary material 2 (PDF 125 kb)
10340_2015_726_MOESM3_ESM.pdf (87 kb)
Supplementary material 3 (PDF 88 kb)

References

  1. Barth FG, Bleckmann H, Bohnenberger J, Seyfarth E-A (1988) Spiders of the genus Cupiennius Simon 1891 (Araneae, Ctenidae) II. On the vibratory environment of a wandering spider. Oecologia 77:194–201CrossRefGoogle Scholar
  2. Beck SD (1980) Insect photoperiodism, 2nd edn. Academic Press, New YorkGoogle Scholar
  3. Bertin S, Guglielmino CR, Karam N, Gomulski LM, Malacrida AR, Gasperi G (2007) Diffusion of the Nearctic leafhopper Scaphoideus titanus Ball in Europe: a consequence of human trading activity. Genetica 131:275–285CrossRefPubMedGoogle Scholar
  4. Brumm H, Slabbekoorn H (2005) Acoustic communication in noise. Adv Stud Behav 35:151–209CrossRefGoogle Scholar
  5. Cardé RT (1990) Principles of mating disruption. In: Ridgway RL, Silverstein RM, Inscoe MN (eds) Behavior-modifying chemicals for insect management. Marcel Dekker, Inc., New York, pp 47–71Google Scholar
  6. Casas J, Magal C (2006) Mutual eavesdropping through vibrations in a host-parasitoid interaction: from plant biomechanics to behavioural ecology. In: Claridge MF, Drosopoulos S (eds) Insect sounds and communication: physiology, behaviour, ecology and evolution. Taylor & Francis, Boca Raton, pp 263–271Google Scholar
  7. Casas J, Bacher S, Tautz J, Meyhofer R, Pierre D (1998) Leaf vibrations and air movements in a leafminer–parasitoid system. Biol Control 11:147–153CrossRefGoogle Scholar
  8. Caudwell A, Kuszala C, Bachelier JC, Larrue J (1970) Transmission de la Flavescence dorée de la vigne aux plantes herbacées par l’allongement du temps d’utilisation de la cicadelle Scaphoideus littoralis BALL et l’étude de sa survie sur un grand nombre d’espèces végétales. Ann Pytopathol 2:415–428Google Scholar
  9. Chehab EW, Eich E, Braam J (2009) Thigmomorphogenesis: a complex plant response to mechano-stimulation. J Exp Bot 60(1):43–56CrossRefPubMedGoogle Scholar
  10. Chuche J, Thiéry D (2009) Cold winter temperatures condition the egg-hatching dynamics of a grape disease vector. Naturwissenschaften 96:827–834CrossRefPubMedPubMedCentralGoogle Scholar
  11. Chuche J, Thiéry D (2014) Biology and ecology of the Flavescence dorée vector Scaphoideus titanus: a review. Agron Sustain Dev 34(2):381–403CrossRefGoogle Scholar
  12. Claridge MF (1985) Acoustic signals in the Homoptera: behavior, taxonomy, and evolution. Ann Rev Entomol 30:297–317CrossRefGoogle Scholar
  13. Cocroft RB, Rodríguez RL (2005) The behavioral ecology of insect vibrational communication. Bioscience 55(4):323–334CrossRefGoogle Scholar
  14. Čokl A, Millar JG (2009) Manipulation of insect signaling for monitoring and control of pest insects. In: Ishaaya I, Horowitz AR (eds) Biorational control of arthropod pests. Springer, Dordrecht, pp 279–316Google Scholar
  15. Cook SM, Khan ZR, Pickett JA (2007) The use of push-pull strategies in integrated pest management. Annu Rev Entomol 52:375–400CrossRefPubMedGoogle Scholar
  16. Eguagie WE (1974) An analysis of movement of adult Tingis ampliata H.-S. (Heteroptera: Tingidae) in a natural habitat. J Anim Ecol 43(2):521–535CrossRefGoogle Scholar
  17. Eriksson A, Anfora G, Lucchi A, Virant-Doberlet M, Mazzoni V (2011) Inter-plant vibrational communication in a leafhopper insect. PLoS ONE 6(5):e19692CrossRefPubMedPubMedCentralGoogle Scholar
  18. Eriksson A, Anfora G, Lucchi A, Lanzo F, Virant-Doberlet M, Mazzoni V (2012) Exploitation of insect vibrational signals reveals a new method of pest management. PLoS ONE 7(3):e32945CrossRefGoogle Scholar
  19. Foster SP, Harris MO (1997) Behavioral manipulation methods for insect pest-management. Annu Rev Entomol 42:123–146CrossRefPubMedGoogle Scholar
  20. Gerhardt HC, Huber F (2002) Acoustic communication in insects and anurans: common problems and diverse solutions. University of Chicago Press, ChicagoGoogle Scholar
  21. Hofstetter RW, Dunn DD, McGuire R, Potter KA (2014) Using acoustic technology to reduce bark beetle reproduction. Pest Manag Sci 70(1):24–27CrossRefPubMedGoogle Scholar
  22. Ichikawa T (1982) Density-related changes in male-male competitive behaviour in the rice brown planthopper, Nilaparvata lugens (Stål) (Homoptera: Delphacidae). App Entomol Zool 17(4):439–452Google Scholar
  23. Ioriatti C, Anfora G, Tasin M, De Cristofaro A, Witzgall P, Lucchi A (2011) Chemical ecology and management of Lobesia botrana (Lepidoptera: Tortricidae). J Econ Entomol 104(4):1125–1137CrossRefPubMedGoogle Scholar
  24. Lessio F, Alma A (2004) Seasonal and daily movement of Scaphoideus titanus Ball (Homoptera: Cicadellidae). Environ Entomol 33(6):1689–1694CrossRefGoogle Scholar
  25. MacDonald PL, Gardner RC (2000) Type I error rate comparisons of post hoc procedures for I x J Chi square tables. Educ Psychol Meas 60:735–754CrossRefGoogle Scholar
  26. Mankin RW (2012) Applications of acoustics in insect pest management. CAB Rev 7(1):1–7CrossRefGoogle Scholar
  27. Mazzoni V, Prešern J, Lucchi A, Virant-Doberlet M (2009a) Reproductive strategy of the Nearctic leafhopper Scaphoideus titanus Ball (Hemiptera: Cicadellidae). Bull Entomol Res 99(4):401–413CrossRefPubMedGoogle Scholar
  28. Mazzoni V, Lucchi A, Čokl A, Prešern J, Virant-Doberlet M (2009b) Disruption of the reproductive behaviour of Scaphoideus titanus by playback of vibrational signals. Entomol Exp Appl 133:174–185CrossRefGoogle Scholar
  29. Mazzoni V, Eriksson A, Anfora G, Lucchi A, Virant-Doberlet M (2014) Active space and the role of amplitude in plant-borne vibrational communication. In: Cocroft RB, Gogala M, Hill PSM, Wessel A (eds) Studying vibrational communication. Springer, Heidelberg, pp 125–146Google Scholar
  30. McNett GD, Luan LH, Cocroft RB (2010) Wind-induced noise alters signaler and receiver behavior in vibrational communication. Behav Ecol Sociobiol 64:2043–2051CrossRefGoogle Scholar
  31. Miller JR, Gut LJ, de Lame FM, Stelinski LL (2006) Differentiation of competitive vs. non-competitive mechanisms mediating disruption of moth sexual communication by point sources of sex pheromone (Part 1): theory. J Chem Ecol 32:2089–2114CrossRefPubMedGoogle Scholar
  32. Papura D, Burban C, van Helden M, Giresse X, Nusillard B, Guillemaud T, Kerdelhué C (2012) Microsatellite and mitochondrial data provide evidence for a single major introduction for the Neartic leafhopper Scaphoideus titanus in Europe. PLoS ONE 7:e36882CrossRefPubMedPubMedCentralGoogle Scholar
  33. Polajnar J, Eriksson A, Rossi Staconi MV, Lucchi A, Anfora G, Virant-Doberlet M, Mazzoni V (2014) The process of pair formation mediated by substrate-borne vibrations in a small insect. Behav Proc 107:68–78CrossRefGoogle Scholar
  34. Polajnar J, Eriksson A, Lucchi A, Anfora G, Virant-Doberlet M, Mazzoni V (2015) Manipulating behaviour with substrate-borne vibrations: potential for insect pest control. Pest Manag Sci 71(1):15–23CrossRefPubMedGoogle Scholar
  35. Sanders CJ (1997) Mechanisms of mating disruption in moths. In: Cardé RT, Minks AK (eds) Insect pheromone research IV: new directions. Springer, New York, pp 333–346CrossRefGoogle Scholar
  36. Saxena KN, Kumar H (1980) Interruption of acoustic communication and mating in a leafhopper and a planthopper by aerial sound vibrations picked up by plants. Experientia 36:933–936CrossRefGoogle Scholar
  37. Tishechkin DY (2007) Background noises in vibratory communication channels of Homoptera (Cicadinea and Psyllinea). Russ Entomol J 16:39–46Google Scholar
  38. Tishechkin DY (2013) Vibrational background noise in herbaceous plants and its impact on acoustic communication of small Auchenorrhyncha and Psyllinea (Homoptera). Entomol Rev 93(5):548–558CrossRefGoogle Scholar
  39. Vélez MJ, Brockmann J (2006) Seasonal variation in selection on male calling song in the field cricket, Gryllus rubens. Anim Behav 72(2):439–448CrossRefGoogle Scholar
  40. Vicens N, Bosch J (2000) Weather-dependent pollinator activity in an apple orchard with special reference to Osmia cornuta and Apis mellifera (Hymenoptera: Megachilidae and Apidae). Environ Entomol 29(3):413–420CrossRefGoogle Scholar
  41. Vidano C (1964) Scoperta in Italia dello Scaphoideus littoralis Ball cicalina americana collegata alla “Flavescence dorée” della Vite. Ital Agric 101:1031–1049Google Scholar
  42. Vidano C (1966) Scoperta della ecologia ampelofila del cicadellide Scaphoideus littoralis Ball nella regione neartica originaria. Ann Fac Sci Agr Univ Torino 3:297–302Google Scholar
  43. Virant-Doberlet M, Mazzoni V, de Groot M, Polajnar J, Lucchi A, Symondson WOC, Čokl A (2014) Vibrational communication networks: eavesdropping and biotic noise. In: Cocroft RB, Gogala M, Hill PSM, Wessel A (eds) Studying vibrational communication. Springer, Heidelberg, pp 93–123Google Scholar
  44. Walker TJ (1988) Acoustic traps for agriculturally important insects. Fla Entomol 71:484–492CrossRefGoogle Scholar
  45. Witzgall P, Stelinski L, Gut L, Thomson D (2008) Codling moth management and chemical ecology. Annu Rev Entomol 53:503–522CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Jernej Polajnar
    • 1
  • Anna Eriksson
    • 1
    • 2
  • Meta Virant-Doberlet
    • 3
  • Valerio Mazzoni
    • 1
    Email author
  1. 1.Sustainable Agro-Ecosystems and Bioresources DepartmentFondazione Edmund MachSan Michele all’AdigeItaly
  2. 2.Center for Mind/Brain SciencesUniversity of TrentoRoveretoItaly
  3. 3.Department of EntomologyNational Institute of BiologyLjubljanaSlovenia

Personalised recommendations