Journal of Pest Science

, Volume 89, Issue 1, pp 7–20 | Cite as

Aphid parasitoid generalism: development, assessment, and implications for biocontrol

  • Lucie Raymond
  • Manuel Plantegenest
  • Vesna Gagic
  • Yoann Navasse
  • Blas Lavandero


Host specialization in aphid parasitoids is important both from a theoretical and an applied point of view. It arises from various ecological mechanisms involving their interactions with aphids, host plants, and endosymbiotic bacteria, as well as with potential competitors and enemies. From an applied point of view, host specialization in aphid parasitoids has a great importance as it determines the biological control they provide through their capacity to switch between different hosts, to persist in the agrosystem in the absence of the pest, and to regulate pest outbreaks in a rapidly changing system. It also conditions the risk of undesirable effects on non-target species in the case of introduction or augmentation of populations of parasitoids. Biocontrol literature that looks at the benefits of generalist and specialists natural enemies is mainly focused on differences between different guilds of natural enemies and does not consider the differences in host specialization within a single guild. This review synthesizes the mechanisms related to host-use by aphid parasitoids, focusing on the differences between generalist and specialist species. Second, this work describes the difficulty to determine the host range of generalist parasitoid species. Our review points out some observational artifacts, as is the existence of cryptic species or spatiotemporal variability in host acceptance, which may lead to misinterpretations about host specialization and result in pest management failures. Regarding biological control services, moderately generalized species that could use various host species to sustain their populations may ensure the long-term control, whereas specialist species would provide higher parasitism rates. At the community level, the co-occurrence of specialist and generalist parasitoids may maximize biological control services both in terms of efficiency and in terms of stability in space and time.


Aphid parasitoids Biological control Host specialization Polyphagy 



The authors would like to thank the helpful comments from all reviewers with which this review was greatly improved. For funding, the authors would like to thank project APHIDWEB 611810 Structure, strength and invasibility of aphid food webs-Marie Curie Actions—International Research Staff Exchange Scheme (IRSES) and Fondecyt Grant 1110341 to BL for financial support and travel grants to MP and LR. LR was supported by Millennium Nucleus Center ICM NC120027.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Research Involving Human Participants and/or Animals and Informed Consent

Not applicable to the described work.


  1. Abrahamson WG, Blair CA (2008) Sequential radiation through host-race formation: herbivore diversity leads to diversity in natural enemies. In: Tilmon KJ (ed) Specialization, speciation and radiation: the evolutionary biology of herbivorous insects. University of California Press, BerkeleyGoogle Scholar
  2. Alhmedi A, Haubruge E, D’Hoedt S, Francis F (2011) Quantitative food webs of herbivore and related beneficial community in non-crop and crop habitats. Biol Control 58:103–112. doi: 10.1016/j.biocontrol.2011.04.005 CrossRefGoogle Scholar
  3. Andrade TO, Hervé M, Outreman Y et al (2013) Winter host exploitation influences fitness traits in a parasitoid. Entomol Exp Appl 147:167–174. doi: 10.1111/eea.12055 CrossRefGoogle Scholar
  4. Antolin MF, Bjorksten TA, Vaughn TT (2006) Host-related fitness trade-offs in a presumed generalist parasitoid, Diaeretiella rapae (Hymenoptera: Aphidiidae). Ecol Entomol 31:242–254. doi: 10.1111/j.1365-2311.2006.00769.x CrossRefGoogle Scholar
  5. Asgari S, Rivers DB (2010) Venom proteins from endoparasitoid wasps and their role in host-parasite interactions. Annu Rev Entomol 56:313–335. doi: 10.1146/annurev-ento-120709-144849 CrossRefGoogle Scholar
  6. Baer CF, Tripp DW, Bjorksten TA, Antolin MF (2004) Phylogeography of a parasitoid wasp (Diaeretiella rapae): no evidence of host-associated lineages. Mol Ecol 13:1859–1869. doi: 10.1111/j.1365-294X.2004.02196.x PubMedCrossRefGoogle Scholar
  7. Barahoei H, Rakhshani E, Madjdzadeh SM et al (2013) Aphid parasitoid species (Hymenoptera: Braconidae: Aphidiinae) of central submountains of Iran. North West J Zool 9:70–93Google Scholar
  8. Barahoei H, Rakhshani E, Nader E et al (2014) Checklist of Aphidiinae parasitoids (Hymenoptera: Braconidae) and their host aphid associations in Iran. J Crop Prot 3:199–232Google Scholar
  9. Berenbaum M (2009) Insect biodiversity—millions and millions. In: Foottit RG, Adler PH (eds) Insect biodiversity: science and society. Wiley, Oxford, pp 575–582CrossRefGoogle Scholar
  10. Bernays E (1988) Host specificity in phytophagous insects: selection pressure from generalist predators. Entomol Exp Appl 49:131–140. doi: 10.1111/j.1570-7458.1988.tb02484.x CrossRefGoogle Scholar
  11. Bernays E, Graham M (1988) On the evolution of host specificity in phytophagous arthropods. Ecology 69:886–892. doi: 10.2307/1941237 CrossRefGoogle Scholar
  12. Bernays E, Wcislo WT (1994) Sensory capabilities, information processing, and resource specialization. Q Rev Biol 69:187–204. doi: 10.2307/3037716 CrossRefGoogle Scholar
  13. Bilodeau E, Simon J-C, Guay J-F et al (2013) Does variation in host plant association and symbiont infection of pea aphid populations induce genetic and behaviour differentiation of its main parasitoid, Aphidius ervi? Evol Ecol 27:165–184. doi: 10.1007/s10682-012-9577-z CrossRefGoogle Scholar
  14. Blande JD, Pickett JA, Poppy GM (2004) Attack rate and success of the parasitoid Diaeretiella rapae on specialist and generalist feeding aphids. J Chem Ecol 30:1781–1795. doi: 10.1023/B:JOEC.0000042401.52088.54 PubMedCrossRefGoogle Scholar
  15. Bleeker MAK, Smid HM, Steidle JLM et al (2006) Differences in memory dynamics between two closely related parasitoid wasp species. Anim Behav 71:1343–1350. doi: 10.1016/j.anbehav.2005.09.016 CrossRefGoogle Scholar
  16. Blommers LHM (1994) Integrated pest management in european apple orchards. Annu Rev Entomol 39:213–241. doi: 10.1146/annurev.en.39.010194.001241 CrossRefGoogle Scholar
  17. Bonsall MB, Hassell MP (1997) Apparent competition structures ecological assemblages. Nature 388:371–373CrossRefGoogle Scholar
  18. Bonsall MB, Hassell MP (1998) Population dynamics of apparent competition in a host-parasitoid assemblage. J Anim Ecol 67:918–929. doi: 10.2307/2647421 PubMedCrossRefGoogle Scholar
  19. Brewer MJ, Noma T, Elliott NC (2005) Hymenopteran parasitoids and dipteran predators of the invasive aphid Diuraphis noxia after enemy introductions: temporal variation and implication for future aphid invasions. Biol Control 33:315–323. doi: 10.1016/j.biocontrol.2005.03.013 CrossRefGoogle Scholar
  20. Brown JH (1984) On the relationship between abundance and distribution of species. Am Nat 124:255–279. doi: 10.2307/2461494 CrossRefGoogle Scholar
  21. Bukovinszky T, van Veen FJF, Jongema Y, Dicke M (2008) Direct and indirect effects of resource quality on food web structure. Science 319(5864):804–807. doi: 10.1126/science.1148310 PubMedCrossRefGoogle Scholar
  22. Cagnolo L, Salvo A, Valladares G (2011) Network topology: patterns and mechanisms in plant-herbivore and host-parasitoid food webs. J Anim Ecol 80:342–351. doi: 10.1111/j.1365-2656.2010.01778.x PubMedCrossRefGoogle Scholar
  23. Chau A, Mackauer M (2001) Preference of the aphid parasitoid Monoctonus paulensis (Hymenoptera: Braconidae, Aphidiinae) for different aphid species: female choice and offspring survival. Biol Control 20:30–38. doi: 10.1006/bcon.2000.0881 CrossRefGoogle Scholar
  24. Colles A, Liow LH, Prinzing A (2009) Are specialists at risk under environmental change? Neoecological, paleoecological and phylogenetic approaches. Ecol Lett 12:849–863. doi: 10.1111/j.1461-0248.2009.01336.x PubMedCentralPubMedCrossRefGoogle Scholar
  25. Degnan PH, Moran NA (2008) Diverse phage-encoded toxins in a protective insect endosymbiont. Appl Environ Microbiol 74:6782–6791. doi: 10.1128/aem.01285-08 PubMedCentralPubMedCrossRefGoogle Scholar
  26. Derocles SAP, Le Ralec A, Plantegenest M et al (2012) Identification of molecular markers for DNA barcoding in the Aphidiinae (Hym. Braconidae). Mol Ecol Resour 12:197–208. doi: 10.1111/j.1755-0998.2011.03083.x PubMedCrossRefGoogle Scholar
  27. Derocles SAP, Le Ralec A, Besson MM et al (2014) Molecular analysis reveals high compartmentalization in aphid–primary parasitoid networks and low parasitoid sharing between crop and noncrop habitats. Mol Ecol. doi: 10.1111/mec.12701 PubMedGoogle Scholar
  28. Desneux N, Barta RJ, Hoelmer KA, Hopper KR, Heimpel GE (2009) Multifaceted determinants of host specificity in an aphid parasitoid. Oecologia 160:387–398. doi: 10.1007/s00442-009-1289-x PubMedCrossRefGoogle Scholar
  29. Desneux N, Blahnik R, Delebecque CJ, Heimpel GE (2012) Host phylogeny and specialisation in parasitoids. Ecol Lett 15(5):453–460. doi: 10.1111/j.1461-0248.2012.01754.x PubMedCrossRefGoogle Scholar
  30. Dethier VG (1954) Evolution of feeding preferences in phytophagous insects. Evolution 8:33–54. doi: 10.2307/2405664 CrossRefGoogle Scholar
  31. Devictor V, Clavel J, Julliard R et al (2010) Defining and measuring ecological specialization. J Appl Ecol 47:15–25. doi: 10.1111/j.1365-2664.2009.01744.x CrossRefGoogle Scholar
  32. Digilio MC, Isidoro N, Tremblay E, Pennacchio F (2000) Host castration by Aphidius ervi venom proteins. J Insect Physiol 46:1041–1050. doi: 10.1016/S0022-1910(99)00216-4 PubMedCrossRefGoogle Scholar
  33. Driessen G, Hemerik LIA (1992) The time and egg budget of Leptopilina clavipes, a parasitoid of larval Drosophila. Ecol Entomol 17:17–27. doi: 10.1111/j.1365-2311.1992.tb01034.x CrossRefGoogle Scholar
  34. Ehler LE (1998) Conservation biological control: past, present and future. In: Barbosa PA (ed) Conservation biological control. Academic Press, CaliforniaCrossRefGoogle Scholar
  35. Elias M, Fontaine C, Frank van Veen FJ (2013) Evolutionary history and ecological processes shape a local multilevel antagonistic network. Curr Biol 23:1355–1359. doi: 10.1016/j.cub.2013.05.066 PubMedCrossRefGoogle Scholar
  36. Elzinga JA, Van Nouhuys S, Van Leeuwen D-J, Biere A (2007) Distribution and colonisation ability of three parasitoids and their herbivorous host in a fragmented landscape. Basic Appl Ecol 8:75–88. doi: 10.1016/j.baae.2006.04.003 CrossRefGoogle Scholar
  37. Fabre JP, Rabasse JM (1987) Introduction dans le Sud-Est de la france d’un parasite: Pauesia cedrobii [Hym.: Aphidiidae] du puceron: Cedrobium laportei [Hom.: Lachnidae] du cèdre de l’atlas: Cedrus atlantica. Entomophaga 32:127–141. doi: 10.1007/BF02373123 CrossRefGoogle Scholar
  38. Falabella P, Riviello L, Caccialupi P et al (2007) A γ-glutamyl transpeptidase of Aphidius ervi venom induces apoptosis in the ovaries of host aphids. Insect Biochem Mol Biol 37:453–465. doi: 10.1016/j.ibmb.2007.02.005 PubMedCrossRefGoogle Scholar
  39. Fang Q, Wang L, Zhu J et al (2010) Expression of immune-response genes in lepidopteran host is suppressed by venom from an endoparasitoid, Pteromalus puparum. BMC Genom 11:484. doi: 10.1186/1471-2164-11-484 CrossRefGoogle Scholar
  40. Fernández C, Nentwig W (1997) Quality control of the parasitoid Aphidius colemani (Hym., Aphidiidae) used for biological control in greenhouses. J Appl Entomol 121:447–456. doi: 10.1111/j.1439-0418.1997.tb01433.x CrossRefGoogle Scholar
  41. Ferrari J, Darby AC, Daniell TJ et al (2004) Linking the bacterial community in pea aphids with host-plant use and natural enemy resistance. Ecol Entomol 29:60–65. doi: 10.1111/j.1365-2311.2004.00574.x CrossRefGoogle Scholar
  42. Frere I, Fabry J, Hance T (2007) Apparent competition or apparent mutualism? An analysis of the influence of rose bush strip management on aphid population in wheat field. J Appl Entomol 131:275–283. doi: 10.1111/j.1439-0418.2007.01157.x CrossRefGoogle Scholar
  43. Fuentes-Contreras JE, Powell W, Wadhams LJ et al (1996) Influence of wheat and oat cultivars on the development of the cereal aphid parasitoid Aphidius rhopalosiphi and the generalist aphid parasitoid Ephedrus plagiator. Ann Appl Biol 129:181–187. doi: 10.1111/j.1744-7348.1996.tb05742.x CrossRefGoogle Scholar
  44. Futuyma DJ, Moreno G (1988) The evolution of ecological specialization. Annu Rev Ecol Syst 19:207–233. doi: 10.1146/ CrossRefGoogle Scholar
  45. Gagic V, Tscharntke T, Dormann CF et al (2011) Food web structure and biocontrol in a four-trophic level system across a landscape complexity gradient. Proc R Soc B Biol Sci 278:2946–2953. doi: 10.1098/rspb.2010.2645 CrossRefGoogle Scholar
  46. Gagic V, Hänke S, Thies C et al (2012) Agricultural intensification and cereal aphid–parasitoid–hyperparasitoid food webs: network complexity, temporal variability and parasitism rates. Oecologia 170:1099–1109. doi: 10.1007/s00442-012-2366-0 PubMedCentralPubMedCrossRefGoogle Scholar
  47. Gaston KJ, Blackburn TM, Lawton JH (1997) Interspecific abundance-range size relationships: an appraisal of mechanisms. J Anim Ecol 66:579–601. doi: 10.2307/5951 CrossRefGoogle Scholar
  48. Gerling D, Orion T, Delarea Y (1990) Eretmocerus penetration and immature development: a novel approach to overcome host immunity. Arch Insect Biochem Physiol 13:247–253. doi: 10.1002/arch.940130311 CrossRefGoogle Scholar
  49. Godfray HCJ (1994) Parasitoids, behavioral and evolutionary ecology. Princeton University Press, PrincetonGoogle Scholar
  50. Govind S (2008) Innate immunity in Drosophila: pathogens and pathways. Insect Sci 15:29–43. doi: 10.1111/j.1744-7917.2008.00185.x PubMedCentralPubMedCrossRefGoogle Scholar
  51. Gross P (1993) Insect behavioral and morphological defenses against parasitoids. Annu Rev Entomol 38:251–273CrossRefGoogle Scholar
  52. Gunderson LH (2000) Ecological resilience—in theory and application. Annu Rev Ecol Syst 31:425–439. doi: 10.2307/221739 CrossRefGoogle Scholar
  53. Helmus MR, Bland TJ, Williams CK, Ives AR (2007) Phylogenetic measures of biodiversity. Am Nat 169:E68–E83. doi: 10.1086/511334 PubMedCrossRefGoogle Scholar
  54. Henri DC, Van Veen FJF (2011) Body size, life history and the structure of host-parasitoid networks. Adv Ecol Res 45:135–180CrossRefGoogle Scholar
  55. Henry LM, Gillespie DR, Roitberg BD (2005) Does mother really know best? Oviposition preference reduces reproductive performance in the generalist parasitoid Aphidius ervi. Entomol Exp Appl 116:167–174. doi: 10.1111/j.1570-7458.2005.00318.x CrossRefGoogle Scholar
  56. Henry LM, Roitberg BD, Gillespie DR (2008) Host-range evolution in aphidius parasitoids: fidelity, virulence and fitness trade-offs on an ancestral host. Evolution (N Y) 62:689–699. doi: 10.1111/j.1558-5646.2007.00316.x Google Scholar
  57. Höller C (1990) Overwintering and hymenopterous parasitism in autumn of the cereal aphid Sitobion avenae (F.) in northern FR Germany. J Appl Entomol 109:21–28. doi: 10.1111/j.1439-0418.1990.tb00014.x CrossRefGoogle Scholar
  58. Holt RD (1977) Predation, apparent competition, and the structure of prey communities. Theor Popul Biol 12:197–229. doi: 10.1016/0040-5809(77)90042-9 PubMedCrossRefGoogle Scholar
  59. Holt RD, Kotler BP (1987) Short-term apparent competition. Am Nat 130:412–430. doi: 10.2307/2461893 CrossRefGoogle Scholar
  60. Holt RD, Lawton JH (1994) The ecological consequences of shared natural enemies. Annu Rev Ecol Syst 25:495–520. doi: 10.1146/ CrossRefGoogle Scholar
  61. Hutchinson GE (1957) Concluding remarks. Cold Spring Harb Symp Quant Biol 22:415–427CrossRefGoogle Scholar
  62. Jaenike J (1978) On optimal oviposition behavior in phytophagous insects. Theor Popul Biol 14:350–356. doi: 10.1016/0040-5809(78)90012-6 PubMedCrossRefGoogle Scholar
  63. Juliano S, Lounibos LP, Nishimura N, Greene K (2010) Your worst enemy could be your best friend: predator contributions to invasion resistance and persistence of natives. Oecologia 162:709–718. doi: 10.1007/s00442-009-1475-x PubMedCentralPubMedCrossRefGoogle Scholar
  64. Kaser JM, Heimpel GE (2015) Linking risk and efficacy in biological control host–parasitoid models. Biol Control 90:49–60. doi: 10.1016/j.biocontrol.2015.05.005 CrossRefGoogle Scholar
  65. Kavallieratos NG, Tomanović Ž, Starý P et al (2004) A survey of aphid parasitoids (Hymenoptera: Braconidae: Aphidiinae) of Southeastern Europe and their aphid-plant associations. Appl Entomol Zool 39:37CrossRefGoogle Scholar
  66. Klapwijk MJ, Lewis OT (2011) Spatial ecology of multiple parasitoids of a patchily-distributed host: implications for species coexistence. Ecol Entomol 36:212–220. doi: 10.1111/j.1365-2311.2011.01261.x CrossRefGoogle Scholar
  67. Krasnov BR, Poulin R, Shenbrot GI et al (2004) Ectoparasitic “Jacks-of-All-Trades”: relationship between abundance and host specificity in lleas (Siphonaptera) parasitic on small mammals. Am Nat 164:506–516. doi: 10.1086/423716 PubMedCrossRefGoogle Scholar
  68. Krespi L (1990) Etude de la biocénose parasitaire des pucerons des céréales dans le bassin de Rennes : cas particulier d’Aphidius uzbekistanicus. PhD Thesis, Université de Rennes 1Google Scholar
  69. Krespi L, Dedryver C-A, Creach V et al (1997) Variability in the development of cereal aphid parasitoids and hyperparasitoids in oceanic regions as a response to climate and abundance of hosts. Environ Entomol 26:545–551CrossRefGoogle Scholar
  70. Labrosse C, Carton Y, Dubuffet A et al (2003) Active suppression of D. melanogaster immune response by long gland products of the parasitic wasp Leptopilina boulardi. J Insect Physiol 49:513–522. doi: 10.1016/S0022-1910(03)00054-4 PubMedCrossRefGoogle Scholar
  71. Laliberté E, Tylianakis JM (2010) Deforestation homogenizes tropical parasitoid–host networks. Ecology 91:1740–1747. doi: 10.1890/09-1328.1 PubMedCrossRefGoogle Scholar
  72. Landis DA, Wratten SD, Gurr GM (2000) Habitat management to conserve natural enemies of arthropod pests in agriculture. Annu Rev Entomol 45:175–201. doi: 10.1146/annurev.ento.45.1.175 PubMedCrossRefGoogle Scholar
  73. Langer A, Hance T (2004) Enhancing parasitism of wheat aphids through apparent competition: a tool for biological control. Agric Ecosyst Environ 102:205–212. doi: 10.1016/j.agee.2003.07.005 CrossRefGoogle Scholar
  74. Lavandero B, Tylianakis JM (2013) Genotype matching in a parasitoid–host genotypic food web: an approach for measuring effects of environmental change. Mol Ecol 22:229–238. doi: 10.1111/mec.12100 PubMedCrossRefGoogle Scholar
  75. Le Ralec A, Ribulé A, Barragan A, Outreman Y (2011) Host range limitation caused by incomplete host regulation in an aphid parasitoid. J Insect Physiol 57:363–371. doi: 10.1016/j.jinsphys.2010.12.002 PubMedCrossRefGoogle Scholar
  76. Lei G, Hanski I (1998) Spatial dynamics of two competing specialist parasitoids in a host metapopulation. J Anim Ecol 67:422–433. doi: 10.1046/j.1365-2656.1998.00204.x CrossRefGoogle Scholar
  77. Levins R (1962) Theory of fitness in a heterogeneous environment. I. The fitness set and adaptive function. Am Nat 96:361–378CrossRefGoogle Scholar
  78. Łukasik P, Dawid M, Ferrari J, Godfray HCJ (2013) The diversity and fitness effects of infection with facultative endosymbionts in the grain aphid, Sitobion avenae. Oecologia 173:985–996. doi: 10.1007/s00442-013-2660-5 PubMedCrossRefGoogle Scholar
  79. MacArthur RH, Pianka ER (1966) On optimal use of a patchy environment. Am Nat 100:603–609. doi: 10.2307/2459298 CrossRefGoogle Scholar
  80. Mackauer M, Starý P (1967) World Aphidiidae: hym. Ichneumonoidea, vol 2. Le Francois, ParisGoogle Scholar
  81. Mackauer M, Völkl W (1993) Regulation of aphid populations by aphidiid wasps: does parasitoid foraging behaviour or hyperparasitism limit impact? Oecologia 94:339–350. doi: 10.1007/BF00317107 CrossRefGoogle Scholar
  82. Malcolm S (1989) Disruption of web structure and predatory behavior of a spider by plant-derived chemical defenses of an aposematic aphid. J Chem Ecol 15:1699–1716. doi: 10.1007/BF01012259 PubMedCrossRefGoogle Scholar
  83. Moran NA, McCutcheon JP, Nakabachi A (2008) Genomics and evolution of heritable bacterial symbionts. Annu Rev Genet 42:165–190. doi: 10.1146/annurev.genet.41.110306.130119 PubMedCrossRefGoogle Scholar
  84. Moreau SJM, Guillot S (2005) Advances and prospects on biosynthesis, structures and functions of venom proteins from parasitic wasps. Insect Biochem Mol Biol 35:1209–1223. doi: 10.1016/j.ibmb.2005.07.003 PubMedCrossRefGoogle Scholar
  85. Morris RJ, Müller CB, Godfray HCJ (2001) Field experiments testing for apparent competition between primary parasitoids mediated by secondary parasitoids. J Anim Ecol 70:301–309. doi: 10.1111/j.1365-2656.2001.00495.x CrossRefGoogle Scholar
  86. Morris RJ, Lewis OT, Godfray HCJ (2004) Experimental evidence for apparent competition in a tropical forest food web. Nature 428:310–313PubMedCrossRefGoogle Scholar
  87. Muller CB, Adriaanse ICT, Belshaw R, Godfray HCJ (1999) The structure of an aphid–parasitoid community. J Anim Ecol 68:346–370. doi: 10.1046/j.1365-2656.1999.00288.x CrossRefGoogle Scholar
  88. Ode PJ (2006) Plant chemistery and natural enemy fitness: effects on herbivore and natural enemy interactions. Annu Rev Entomol 51:163–185. doi: 10.1146/annurev.ento.51.110104.151110 PubMedCrossRefGoogle Scholar
  89. Oliver KM, Russell JA, Moran NA, Hunter MS (2003) Facultative bacterial symbionts in aphids confer resistance to parasitic wasps. Proc Natl Acad Sci 100:1803–1807. doi: 10.1073/pnas.0335320100 PubMedCentralPubMedCrossRefGoogle Scholar
  90. Oliver KM, Moran NA, Hunter MS (2005) Variation in resistance to parasitism in aphids is due to symbionts not host genotype. Proc Natl Acad Sci U S A 102:12795–12800. doi: 10.1073/pnas.0506131102 PubMedCentralPubMedCrossRefGoogle Scholar
  91. Pennacchio F, Strand MR (2006) Evolution of developmental strategies in parasitic hymenoptera. Annu Rev Entomol 51:233–258. doi: 10.1146/annurev.ento.51.110104.151029 PubMedCrossRefGoogle Scholar
  92. Pennacchio F, Digilio MC, Tremblay E (1995) Biochemical and metabolic alterations in Acyrthosiphon pisum parasitized by Aphidius ervi. Arch Insect Biochem Physiol 30:351–367. doi: 10.1002/arch.940300405 CrossRefGoogle Scholar
  93. Peralta G, Frost CM, Rand TA et al (2014) Complementarity and redundancy of interactions enhance attack rates and spatial stability in host–parasitoid food webs. Ecology 95:1888–1896. doi: 10.1890/13-1569.1 PubMedCrossRefGoogle Scholar
  94. Petermann JS, Müller CB, Weigelt A et al (2010) Effect of plant species loss on aphid–parasitoid communities. J Anim Ecol 79:709–720. doi: 10.1111/j.1365-2656.2010.01674.x PubMedCrossRefGoogle Scholar
  95. Poulin R, Mouillot D (2003) Parasite specialization from a phylogenetic perspective: a new index of host specificity. Parasitology 126:473–480PubMedCrossRefGoogle Scholar
  96. Price PW (1980) Evolutionary biology of parasites. Princeton University Press, PrincetonGoogle Scholar
  97. Pungerl NB (1984) Host preferences of Aphidius (Hymenoptera: Aphidiidae) populations parasitising pea and cereal aphids (Hemiptera: Aphididae). Bull Entomol Res 74:153–162. doi: 10.1017/S0007485300010026 CrossRefGoogle Scholar
  98. Pyke GH, Pulliam HR, Charnov EL (1977) Optimal foraging: a selective review of theory and tests. Q Rev Biol 52:137–154CrossRefGoogle Scholar
  99. Quicke DLJ (1997) Parasitic wasps. Kluwer Academic Publishers, LondresGoogle Scholar
  100. Rakhshani E, Kazemzadeh S, Starý P et al (2012) Parasitoids (Hymenoptera: Braconidae: Aphidiinae) of northeastern Iran: aphidiine-aphid-plant associations, key and description of a new species. J Insect Sci 12:1–26. doi: 10.1673/031.012.14301 PubMedCrossRefGoogle Scholar
  101. Rand TA, Tylianakis JM, Tscharntke T (2006) Spillover edge effects: the dispersal of agriculturally subsidized insect natural enemies into adjacent natural habitats. Ecol Lett 9:603–614. doi: 10.1111/j.1461-0248.2006.00911.x PubMedCrossRefGoogle Scholar
  102. Remaudiere G, Starý P (1994) Arrivée spontanée en région parisienne de l’hyménoptère aphidiide Pauesia cedrobii, parasite du puceron du cèdre Cedrobium laportei. Rev française d’entomologie 15:157–158Google Scholar
  103. Sanders D, van Veen FJF (2011) Ecosystem engineering and predation: the multi-trophic impact of two ant species. J Anim Ecol 80:569–576. doi: 10.1111/j.1365-2656.2010.01796.x PubMedCrossRefGoogle Scholar
  104. Sandrock C, Schirrmeister B, Vorburger C (2011) Evolution of reproductive mode variation and host associations in a sexual-asexual complex of aphid parasitoids. BMC Evol Biol 11:348PubMedCentralPubMedCrossRefGoogle Scholar
  105. Sha ZL, Zhu CD, Murphy RW, Huang DW (2007) Diglyphus isaea (Hymenoptera: Eulophidae): a probable complex of cryptic species that forms an important biological control agent of agromyzid leaf miners. J Zool Syst Evol Res 45:128–135. doi: 10.1111/j.1439-0469.2006.00375.x CrossRefGoogle Scholar
  106. Sheehan W, Shelton AM (1989) Parasitoid response to concentration of herbivore food plants: finding and leaving plants. Ecology 70:993–998. doi: 10.2307/1941367 CrossRefGoogle Scholar
  107. Singer MS (2012) Evolutionary Ecology of Polyphagy. Spec Speciat Radiat Evol Biol Herbiv Insects. doi: 10.1525/california/9780520251328.003.0003 (Export RIS File) Google Scholar
  108. Singer MS, Stireman JO (2005) The tri-trophic niche concept and adaptive radiation of phytophagous insects. Ecol Lett 8:1247–1255. doi: 10.1111/j.1461-0248.2005.00835.x CrossRefGoogle Scholar
  109. Smith MA, Rodriguez JJ, Whitfield JB et al (2008) Extreme diversity of tropical parasitoid wasps exposed by iterative integration of natural history, DNA barcoding, morphology, and collections. Proc Natl Acad Sci 105:12359–12364. doi: 10.1073/pnas.0805319105 PubMedCentralPubMedCrossRefGoogle Scholar
  110. Starý P (1973) A review of the Aphidius species (Hymenoptera, Aphidiidae) of Europe. Slovenské národné múzeum v Bratislave, BratislavaGoogle Scholar
  111. Starý P, Lyon JP, Leclant F (1988) Biocontrol of aphids by the introduced Lysiphlebus testaceipes (Cress.) (Hym., Aphidiidae) in Mediterranean France. J Appl Entomol 105:74–87. doi: 10.1111/j.1439-0418.1988.tb00163.x CrossRefGoogle Scholar
  112. Steidle JLM, Van Loon JJA (2003) Dietary specialization and infochemical use in carnivorous arthropods: testing a concept. Entomol Exp Appl 108:133–148. doi: 10.1046/j.1570-7458.2003.00080.x CrossRefGoogle Scholar
  113. Stilmant D, Bellinghen C, Hance T, Boivin G (2008) Host specialization in habitat specialists and generalists. Oecologia 156:905–912. doi: 10.1007/s00442-008-1036-8 PubMedCrossRefGoogle Scholar
  114. Stireman JO, Nason JD, Heard SB, Seehawer JM (2006) Cascading host-associated genetic differentiation in parasitoids of phytophagous insects. Proc R Soc B Biol Sci 273:523–530. doi: 10.1098/rspb.2005.3363 CrossRefGoogle Scholar
  115. Storeck A, Poppy G, van Emden HF, Powell W (2000) The role of plant chemical cues in determining host preference in the generalist aphid parasitoid Aphidius colemani. Entomol Exp Appl 97:41–46. doi: 10.1046/j.1570-7458.2000.00714.x CrossRefGoogle Scholar
  116. Strand MR, Pech LL (1995) Immunological basis for compatibility in parasitoid–host relationships. Annu Rev Entomol 40:31–56. doi: 10.1146/annurev.en.40.010195.000335 PubMedCrossRefGoogle Scholar
  117. Straub CS, Ives AR, Gratton C (2011) Evidence for a trade-off between host-range breadth and host-use efficiency in aphid parasitoids. Am Nat 177:389–395. doi: 10.1086/658177 PubMedCrossRefGoogle Scholar
  118. Takada H (1998) A review of Aphidius colemani (Hymenoptera : Braconidae; Aphidiinae) and closely related species indigenous to Japan. Appl Entomol Zool 33:59–66. doi: 10.1303/aez.33.59 CrossRefGoogle Scholar
  119. Traugott M, Bell JR, Broad GR et al (2008) Endoparasitism in cereal aphids: molecular analysis of a whole parasitoid community. Mol Ecol 17:3928–3938. doi: 10.1111/j.1365-294X.2008.03878.x PubMedCrossRefGoogle Scholar
  120. Tylianakis JM, Tscharntke T, Lewis OT (2007) Habitat modification alters the structure of tropical host-parasitoid food webs. Nature 445:202–205.
  121. Van Emden HF, Storeck AP, Douloumpaka S, Eleftherianos I et al (2008) Plant chemistry and aphid parasitoids (Hymenoptera: Braconidae): Imprinting and memory. Eur J Entomol 105(3):477–483. ISSN 1210-5759 105:477–483Google Scholar
  122. Van Nouhuys S, Hanski I (2000) Apparent competition between parasitoids mediated by a shared hyperparasitoid. Ecol Lett 3:82–84. doi: 10.1046/j.1461-0248.2000.00123.x CrossRefGoogle Scholar
  123. Van Steenis MJ, El-Khawass KAMH, Hemerik L, van Lenteren JC (1996) Time allocation of the parasitoid Aphidius colemani (Hymenoptera: Aphidiidae) foraging for Aphis gossypii (Homoptera: Aphidae) on cucumber leaves. J Insect Behav 9:283–295. doi: 10.1007/BF02213871 CrossRefGoogle Scholar
  124. Van Veen FJF, Müller CB, Pell JK, Godfray HCJ (2008) Food web structure of three guilds of natural enemies: predators, parasitoids and pathogens of aphids. J Anim Ecol 77:191–200. doi: 10.1111/j.1365-2656.2007.01325.x PubMedCrossRefGoogle Scholar
  125. Vaughn TT, Antolin MF (1998) Population genetics of an opportunistic parasitoid in an agricultural landscape. Heredity 80:152–162CrossRefGoogle Scholar
  126. Vialatte A, Dedryver C-A, Simon J-C et al (2005) Limited genetic exchanges between populations of an insect pest living on uncultivated and related cultivated host plants. Proc R Soc B Biol Sci 272:1075–1082. doi: 10.1098/rspb.2004.3033 CrossRefGoogle Scholar
  127. Völkl W (1992) Aphids or their parasitoids: who actually benefits from ant-attendance? J Anim Ecol 61:273–281. doi: 10.2307/5320 CrossRefGoogle Scholar
  128. Vorburger C (2013) The evolutionary ecology of symbiont-conferred resistance to parasitoids in aphids. Insect Sci 21(3):251–264. doi: 10.1111/1744-7917.12067 Google Scholar
  129. Vorburger C, Gehrer L, Rodriguez P (2010) A strain of the bacterial symbiont Regiella insecticola protects aphids against parasitoids. Biol Lett 6:109–111. doi: 10.1098/rsbl.2009.0642 PubMedCentralPubMedCrossRefGoogle Scholar
  130. Wickremasinghe MGV, Van Emden HF (1992) Reactions of adult female parasitoids, particularly Aphidius rhopalosiphi, to volatile chemical cues from the host plants of their aphid prey. Physiol Entomol 17:297–304. doi: 10.1111/j.1365-3032.1992.tb01025.x CrossRefGoogle Scholar
  131. Zepeda-Paulo FA, Ortiz-Martínez SA, Figueroa CC, Lavandero B (2013) Adaptive evolution of a generalist parasitoid: implications for the effectiveness of biological control agents. Evol Appl 6(6):983–999. doi: 10.1111/eva.12081 PubMedCentralPubMedCrossRefGoogle Scholar
  132. Zepeda-Paulo FA, Lavandero B, Maheo F, Dion E, Outreman Y, Simon JC, Figueroa CC (2015) Does sex-biased dispersal account for the lack of geographic and host-associated differentiation in introduced populations of an aphid parasitoid? Ecol Evol. doi: 10.1002/ece3.1504 PubMedCentralPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Instituto de Ciencias BiológicasUniversidad de TalcaTalcaChile
  2. 2.Millennium Nucleus Centre in Molecular Ecology and Evolutionary Applications in Agroecosystems (CEM)TalcaChile
  3. 3.Agrocampus OuestRennesFrance
  4. 4.CSIROBrisbaneAustralia

Personalised recommendations