Advertisement

Journal of Pest Science

, Volume 89, Issue 1, pp 231–240 | Cite as

Imidacloprid-mediated effects on survival and fertility of the Neotropical brown stink bug Euschistus heros

  • M. F. Santos
  • R. L. Santos
  • H. V. V. Tomé
  • W. F. Barbosa
  • G. F. Martins
  • R. N. C. Guedes
  • E. E. OliveiraEmail author
Original Paper

Abstract

Enhanced reproductive output after sublethal insecticide exposure, including neonicotinoid exposure, has been reported in a diversity of arthropods. Suspicions of such a phenomenon in the Neotropical brown stink bug, Euschistus heros (Hemiptera: Pentatomidae), were sparked by the increasing densities of naturally occurring populations of this insect pest species in Brazilian soybean fields. Here, we tested whether the sublethal exposure to imidacloprid would induce changes in the survival and reproductive performances of E. heros adult females. The imidacloprid estimated LC50 was 0.83 (0.60–1.25) μg a.i./cm2, and the dose recommended for field applications (4.2 μg a.i./cm2) was within the concentration range of the imidacloprid estimated LC80 [2.66 (1.65–5.49) μg a.i./cm2]. Newly emerged (≤24 h) adult females were exposed for 48 h to dry imidacloprid residues (0.042 μg/cm2, equivalent to 1 % of the field rate dose) and exhibited higher levels of cell damage, greater ovariole length, and a larger area of the most developed follicle in their ovaries up to the 6th day of adulthood. Furthermore, these females exhibited reduced rates of survival but higher fecundity and fertility rates compared with untreated females. Our results thus suggest that females of E. heros increased their reproductive output in response to the imidacloprid sublethal exposure. These findings suggest a potential involvement of sublethal exposure to neonicotinoids in the recent outbreaks of the Neotropical brown stink bug E. heros observed in Brazilian soybean-producing regions.

Keywords

Reproductive responses Hormesis Insect ovaries Damaged cells Stink bugs 

Notes

Acknowledgments

This work was supported by grants from CAPES Foundation, the National Council of Scientific and Technological Development (CNPq), the Minas Gerais State Foundation for Research Aid (FAPEMIG), and the Arthur Bernardes Foundation (FUNARBE). We thank Daniela C. Guedes and Nathaly N. C. Miranda for their excellent technical assistance.

References

  1. Ayyanath M, Cutler G, Scott-Dupree C, Sibley P (2013) Transgenerational shifts in reproduction hormesis in green peach aphid exposed to low concentrations of imidacloprid. PLoS ONE 8:e74532PubMedCentralCrossRefPubMedGoogle Scholar
  2. Bal R, Naziroğlu M, Türk G, Yilmaz Ö, Kuloğlu T, Etem E, Baydas G (2012) Insecticide imidacloprid induces morphological and DNA damage through oxidative toxicity on the reproductive organs of developing male rats. Cell Biochem Funct 30:492–499CrossRefPubMedGoogle Scholar
  3. Bao H, Liu S, Gu J, Wang X, Liang X, Liu Z (2009) Sublethal effects of four insecticides on the reproduction and wing formation of brown planthopper, Nilaparvata lugens. Pest Manag Sci 65:170–174CrossRefPubMedGoogle Scholar
  4. Benzidane Y, Lapied B, Thany SH (2011) Neonicotinoid insecticides imidacloprid and clothianidin affect differently neural Kenyon cell death in the cockroach Periplaneta americana. Pestic Biochem Physiol 101:191–197CrossRefGoogle Scholar
  5. Braeckman B, Simoens C, Rzeznik U, Raes H (1997) Effect of sublethal doses of cadmium, inorganic mercury and methylmercury on the cell morphology of an insect cell line (Aedes Albopictus, C6/36). Cell Biol Int 21:823–832CrossRefPubMedGoogle Scholar
  6. Borges M, Lauman RA, Silva CCA, Moraes MCB, Santos HM, Ribeiro DT (2008) Metodologias de criação e manejo de colônias de percevejo da soja (Heteroptera: Pentatomidae) para estudos de comportamento e ecologia química In: Documentos 182, EMBRAPA Recursos Geneticos e Melhoramento, Brasília, Brasil, pp 1–18Google Scholar
  7. Calabrese EJ, Baldwin LA (2003) The hormetic dose-response model is more common than the threshold model in toxicology. Toxicol Sci 71:246–250CrossRefPubMedGoogle Scholar
  8. Calabrese EJ, Stanek EJ III, Nascarella MA, Hoffmann GR (2008) Hormesis predicts low-dose responses better than threshold models. Int J Toxicol 27:369–378CrossRefPubMedGoogle Scholar
  9. Cardone A (2014) Imidacloprid induces morphological and molecular damages on testis of lizard (Podarcis sicula). Ecotoxicol. doi: 10.1007/s10646-014-1361-0 Google Scholar
  10. Charpentier G, Louat F, Bonmatin J-M, Marchand PA, Vanier F, Locker D et al (2014) Lethal and sublethal effects of imidacloprid, after chronic exposure, on the insect model Drosophila melanogaster. Environ Sci Technol 48:4096–4102CrossRefPubMedGoogle Scholar
  11. Cordeiro EMG, Moura ILT, Fadini MAM, Guedes RNC (2013) Beyond selectivity: are behavioral avoidance and hormesis likely causes of pyrethroid-induced outbreaks of the southern red mite Oligonychus ilicis? Chemosphere 93:1111–1116CrossRefPubMedGoogle Scholar
  12. Cutler GC (2013) Insects, insecticides and hormesis: evidence and considerations for study. Dose-Response 11:154–177PubMedCentralCrossRefPubMedGoogle Scholar
  13. Cutler G, Ramanaidu K, Astatkie T, Isman MB (2009) Green peach aphid, Myzus persicae (Hemiptera: Aphididae), reproduction during exposure to sublethal concentrations of imidacloprid and azadirachtin. Pest Manag Sci 65:205–209CrossRefGoogle Scholar
  14. Desneux N, Decourtye A, Delpuech J-M (2007) The sublethal effects of pesticides on beneficial arthropods. Annu Rev Entomol 52:81–106CrossRefPubMedGoogle Scholar
  15. Farias LR, Paula DP, Zhou JJ, Liu R, Pappas GJ Jr, Moraes MCB et al (2014) Identification and expression profile of two putative odorant-binding proteins from the Neotropical brown stink bug, Euschistus heros (Fabricius) (Hemiptera: Pentatomidae). Neotrop Entomol 43:106–114CrossRefGoogle Scholar
  16. Flatt T, Kawecki TJ (2007) Juvenile hormone as a regulator of the trade-off between reproduction and life span in Drosophila melanogaster. Evolution 61:1980–1991CrossRefPubMedGoogle Scholar
  17. Ge L-Q, Hu J-H, Wu J-C, Yang G-Q, Gu H (2009) Insecticide-Induced changes in protein, RNA, and DNA contents in ovary and fat Body of female Nilaparvata lugens (Hemiptera: Delphacidae). J Econ Entomol 102:1506–1514CrossRefPubMedGoogle Scholar
  18. Gregorc A, Ellis JD (2011) Cell death localization in situ in laboratory reared honey bee (Apis mellifera L.) larvae treated with pesticides. Pestic Biochem Physiol 99:200–207CrossRefGoogle Scholar
  19. Guedes RNC, Cutler C (2014) Insecticide-induced hormesis and arthropod pest management. Pest Manag Sci 70:690–697CrossRefPubMedGoogle Scholar
  20. Guedes NMP, Tolledo J, Corrêa AS, Guedes RNC (2010) Insecticide-induced hormesis in an insecticide-resistant strain of the maize weevil, Sitophilus zeamais. J Appl Entomol 134:142–148CrossRefGoogle Scholar
  21. Hoshi N, Hirano T, Omotehara T, Tokumoto J, Umemura Y, Mantani Y et al (2014) Insight into the mechanism of reproductive dysfunction caused by neonicotinoid pesticides. Biol Pharm Bull 37:1439–1443CrossRefPubMedGoogle Scholar
  22. Jager T, Barsi A, Ducrot V (2013) Hormesis on life-history traits: is there such thing as a free lunch? Ecotoxicology 22:263–270CrossRefPubMedGoogle Scholar
  23. James DG, Price TS (2002) Fecundity in twospotted spider mite (Acari: Tetranychidae) is increased by direct and systemic exposure to imidacloprid. J Econ Entomol 95:729–732CrossRefPubMedGoogle Scholar
  24. Jeschke P, Nauen R, Beck ME (2013) Nicotinic acetylcholine receptor agonists: a milestone for modern crop protection. Angew Chem Int Ed Engl 52:9464–9485CrossRefPubMedGoogle Scholar
  25. Kapoor U, Srivastava MK, Srivastava LP (2011) Toxicological impact of technical imidacloprid on ovarian morphology, hormones and antioxidant enzymes in female rats. Food Chem Toxicol 49:3086–3089CrossRefPubMedGoogle Scholar
  26. Laycock I, Lenthall K, Barratt A, Cresswell J (2012) Effects of imidacloprid, a neonicotinoid pesticide, on reproduction in worker bumble bees (Bombus terrestris). Ecotoxicology 21:1937–1945CrossRefPubMedGoogle Scholar
  27. Lee CY (2000) Sublethal effects of insecticides on longevity, fecundity and behaviour of insect pests: a review. J Biosci 11:107–112Google Scholar
  28. Lee CY, Yap HH, Chong NL (1998) Sublethal effects of deltamethrin and propoxur on longevity and reproduction of German cockroaches, Blattella germanica. Entomol Exp Appl 89:137–145CrossRefGoogle Scholar
  29. Liu JL, Yang X, Zhang HM, Chen X, Wu JC (2013) Effects of indoxacarb on total protein, RNA, and DNA contents in the ovaries and fat bodies of Nilaparvata lugens Stål (Hemiptera: Delphacidae) adult females. Pestic Biochem Physiol 106:14–20CrossRefGoogle Scholar
  30. Macfadyen S, Hardie DC, Fagan L, Stefanova K, Perry KD, DeGraaf HE et al (2014) Reducing insecticide use in broad-acre grains production: an Australian study. PLoS ONE 9:e89119PubMedCentralCrossRefPubMedGoogle Scholar
  31. Mattson M, Calabrese E (2010) Hormesis: What it is and why it matters. In: Mattson MP, Calabrese EJ (eds) Hormesis: a revolution in biology, toxicology and medicine. Humana Press, New York, pp 1–13CrossRefGoogle Scholar
  32. Pan H, Liu Y, Liu B, Lu Y, Xu X, Qian X, Wu K, Desneux N (2014) Lethal and sublethal effects of cycloxaprid, a novel cis-nitromethylene neonicotinoid insecticide, on the mirid bug Apolygus lucorum. J Pest Sci 87:731–738CrossRefGoogle Scholar
  33. Panizzi AR, Bueno AF, Silva FAC (2014) Insetos que atacam vagens e grãos. In: Hoffman-Campo CB, Corrêa-Ferreira BS, Moscardi F (eds) Soja: Manejo Integrado de Insetos e outros Artrópodes-Praga. EMBRAPA, Brasília-DF, pp 335–420Google Scholar
  34. Perveen E (2000) Sublethal effects of chlorfluazuron on reproductivity and viability of Spodoptera litura (F.) (Lep., Noctuidae). J Appl Entomol 124:223–231CrossRefGoogle Scholar
  35. Quarcoo F, Bonsi C, Franklin Tackie N, Quarcoo Conrad Bonsi, Tackie Nii (2014) Pesticides, the environment, and human health. In: Larramendy ML, Soloneski S (eds) Agricultural and Biological Sciences: “Pesticides—Toxic Aspects”. InTech Europe, Rijeka, pp 81–103Google Scholar
  36. Rattan SIS (2008) Hormesis in aging. Ageing Res Rev 7:63–78CrossRefPubMedGoogle Scholar
  37. Rossi CA, Roat T, Tavares D, Cintra-Socolowski P, Malaspina O (2013) Brain morphophysiology of africanized bee Apis mellifera exposed to sublethal doses of imidacloprid. Arch Environ Contam Toxicol 65:234–243CrossRefGoogle Scholar
  38. Roubos CR, Rodriguez-Saona C, Isaacs R (2014) Mitigating the effects of insecticides on arthropod biological control at field and landscape scales. Biol Cont. 75:28–38CrossRefGoogle Scholar
  39. SAS Institute (2008) SAS/STAT User’s Guide. Cary, NCGoogle Scholar
  40. Silva CCA, Lauman RA, Blassioli MC, Pareja M, Borges M (2008) Euschistus heros mass rearing technique for the multiplication of Telenomus podisi. Pesqui Agropecu Bras 43:575–580Google Scholar
  41. Silva FAC, Calizotti GS, Panizzi AR (2011) Survivorship and egg production of phytophagous pentatomids in laboratory rearing. Neotrop Entomol. 40:35–38CrossRefPubMedGoogle Scholar
  42. Snodgrass GL, Adamczyk JJ, Gore J (2005) Toxicity of insecticides in a glass-vial bioassay to adult brown, green, and southern green stink bugs (Heteroptera: Pentatomidae). J Econ Entomol 98:177–181CrossRefPubMedGoogle Scholar
  43. Sosa-Gómez DR, Silva JJ (2010) Neotropical brown stink bug (Euschistus heros) resistance to methamidophos in Paraná, Brazil. Pesq Agropec Bras 45:767–769CrossRefGoogle Scholar
  44. Sosa-Gómez DR, Da Silva JJ, De Oliveira Negrao Lopes I, Corso IC, Almeida AMR, De Moraes GCP et al (2009) Insecticide susceptibility of Euschistus heros (Heteroptera: Pentatomidae) in Brazil. J Econ Entomol 102:1209–1216CrossRefPubMedGoogle Scholar
  45. Szczepaniec A, Raupp M (2013) Direct and indirect effects of imidacloprid on fecundity and abundance of Eurytetranychus buxi (Acari: Tetranychidae) on boxwoods. Exp Appl Acarol 59:307–318CrossRefPubMedGoogle Scholar
  46. Tan Y, Biondi A, Desneux N, Gao X-W (2012) Assessment of physiological sublethal effects of imidacloprid on the mirid bug Apolygus lucorum (Meyer-Dür). Ecotoxicology 21:1989–1997CrossRefPubMedGoogle Scholar
  47. Tomé H, Martins G, Lima M, Campos LAO, Guedes R (2012) Imidacloprid-induced impairment of mushroom bodies and behavior of the native stingless bee Melipona quadrifasciata anthidioides. PLoS ONE 7:e38406PubMedCentralCrossRefPubMedGoogle Scholar
  48. Vilca Mallqui KS, Vieira JL, Guedes RNC, Gontijo LM (2014) Azadirachtin-induced hormesis mediating shift in fecundity-longevity trade-off in the mexican bean weevil (Chrysomelidae: Bruchinae). J Econ Entomol 107:860–866CrossRefGoogle Scholar
  49. Wang XY, Yang ZQ, Shen ZR, Lu J, Xu WB (2008) Sublethal effects of selected insecticides on fecundity and wing dimorphism of green peach aphid (Hom., Aphididae). J Appl Entomol 132:135–142CrossRefGoogle Scholar
  50. Willrich MM, Leonard BR, Cook DR (2003) Laboratory and field evaluations of insecticide toxicity to stink bugs (Heteroptera: Pentatomidae). J Cotton Sci 7:156–163Google Scholar
  51. Yin J-l Xu, H-w Wu, J-c Hu, J-h Yang G-q (2008) Cultivar and insecticide applications affect the physiological development of the brown planthopper, Nilaparvata lugens (Stål) (Hemiptera: Delphacidae). Environ Entomol 37:206–212CrossRefPubMedGoogle Scholar
  52. Yu Y, Shen G, Zhu H, Lu Y (2010) Imidacloprid-induced hormesis on the fecundity and juvenile hormone levels of the green peach aphid Myzus persicae (Sulzer). Pestic Biochem Physiol 98:238–242CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • M. F. Santos
    • 1
  • R. L. Santos
    • 2
  • H. V. V. Tomé
    • 1
  • W. F. Barbosa
    • 1
    • 3
  • G. F. Martins
    • 4
  • R. N. C. Guedes
    • 1
  • E. E. Oliveira
    • 1
    Email author
  1. 1.Departamento de EntomologiaUniversidade Federal de ViçosaViçosaBrazil
  2. 2.Departamento de FitotecniaUniversidade Federal de ViçosaViçosaBrazil
  3. 3.Department of Crop Protection, Faculty of Bioscience and EngineeringGhent UniversityGhentBelgium
  4. 4.Departamento de Biologia GeralUniversidade Federal de ViçosaViçosaBrazil

Personalised recommendations