Journal of Pest Science

, Volume 88, Issue 1, pp 9–16 | Cite as

First report of Tuta absoluta resistance to diamide insecticides

  • Emmanouil RoditakisEmail author
  • Emmanouil Vasakis
  • Maria Grispou
  • Marianna Stavrakaki
  • Ralf Nauen
  • Magali Gravouil
  • Andrea Bassi
Rapid Communication


The tomato borer Tuta absoluta (Lepidoptera: Gelechiidae) is an invasive pest of tomato crops that is rapidly expanding around the world. It is considered a devastating pest and its control heavily relies on application of insecticides. Diamides are a novel class of insecticides acting on insect ryanodine receptors and are highly effective against lepidopteran pests. To date, chlorantraniliprole and flubendiamide have been registered in the market and they have been extensively used to manage T. absoluta. In this study, a survey was conducted in Greece and Italy monitoring diamide resistance. The populations originating from Sicily (Italy) exhibited LC50s that ranged between 47.6–435 for chlorantraniliprole and 993–1.376 for flubendiamide, while for Crete (Greece) LC50s ranged between 0.14–2.45 for chlorantraniliprole and 1.7–8.4 for flubendiamide (LC50s in mg L−1). Comparing this result to the susceptible reference strain, high resistance levels for the Italian populations were detected, i.e., up to 2,414- and 1,742-fold for chlorantraniliprole and flubendiamide, respectively. Resistance ratios for Greek populations were found up to 14-fold for chlorantraniliprole and 11-fold for flubendiamide, suggesting that diamide resistance is low but increasing considering monitoring data over time. Hereby, we report for the first time, cases of resistance development to diamide insecticides in T. absoluta. These findings underline the importance of committing to the resistance management strategies for diamide insecticides.


Tuta absoluta Tomato leafminer Resistance Diamide insecticides Chlorantraniliprole Flubendiamide 



This work was partially funded by DuPont de Nemours France S.A.S and Bayer CropScience AG, Germany. The authors would like to thank, DuPont for providing the Tuta absoluta populations from Sicily, the local agronomists for their support during sampling and Mr M. Kechagiadakis (Fytochem S.A., Neo Mirtos, lerapetra) for supplies of plant material.


  1. Abbot WS (1925) A method of computing the effectiveness of an insecticide. J Econ Entomol 18:265–267CrossRefGoogle Scholar
  2. Biondi A, Desneux N, Siscaro G, Zappalà L (2012) Using organic-certified rather than synthetic pesticides may not be safer for biological control agents: selectivity and side effects of 14 pesticides on the predator Orius laevigatus. Chemosphere 87:803–812CrossRefPubMedGoogle Scholar
  3. Campos MR, Rodrigues ARS, Silva WM, Silva TBM, Silva VRF, Guedes RNC, Siqueira HAA (2014a) Spinosad and the tomato borer Tuta absoluta: a bioinsecticide, an invasive pest threat, and high insecticide resistance. PLoS ONE 9:e103235CrossRefPubMedCentralPubMedGoogle Scholar
  4. Campos MR, Silva TBM, Silva WM, Silva JE, Siqueira HAA (2014b) Susceptibility of Tuta absoluta (Lepidoptera: Gelechiidae) Brazilian populations to ryanodine receptor modulators. Pest Manag Sci (in press)Google Scholar
  5. Chailleux A, Bearez P, Pizzol J, Amiens-Desneux E, Ramirez-Romero R, Desneux N (2013) Potential for combined use of parasitoids and generalist predators for biological control of the key invasive tomato pest Tuta absoluta. J Pest Sci 86:533–541CrossRefGoogle Scholar
  6. Che W, Shi T, Wu Y, Yang Y (2013) Insecticide resistance status of field populations of Spodoptera exigua (Lepidoptera: Noctuidae) from China. J Econ Entomol 106:1855–1862CrossRefPubMedGoogle Scholar
  7. Desneux N, Luna MG, Guillemaud T, Urbaneja A (2011) The invasive South American tomato pinworm, Tuta absoluta, continues to spread in Afro-Eurasia and beyond: the new threat to tomato world production. J Pest Sci 84:403–408CrossRefGoogle Scholar
  8. Ebbinghaus-Kintscher U, Luemmen P, Lobitz N, Schulte T, Funke C, Fischer R, Masaki T, Yasokawa N, Tohnishi M (2006) Phthalic acid diamides activate ryanodine-sensitive Ca2+ release channels in insects. Cell Calcium 39:21–33CrossRefPubMedGoogle Scholar
  9. Finney DJ (1964) Probit analysis. Cambridge University Press, CambridgeGoogle Scholar
  10. Gao C, Yao R, Zhang Z, Wu M, Zhang S, Su J (2013) Susceptibility baseline and chlorantraniliprole resistance monitoring in Chilo suppressalis (Lepidoptera: Pyralidae). J Econ Entomol 106:2190–2194CrossRefPubMedGoogle Scholar
  11. Gontijo PC, Picanço MC, Pereira EJG, Martins JC, Chediak M, Guedes RNC (2013) Spatial and temporal variation in the control failure likelihood of the tomato leaf miner, Tuta absoluta. Ann Appl Biol 162:50–59CrossRefGoogle Scholar
  12. Haddi K, Berger M, Bielza P, Cifuentes D, Field LM, Gorman K, Rapisarda C, Williamson MS, Bass C (2012) Identification of mutations associated with pyrethroid resistance in the voltage-gated sodium channel of the tomato leaf miner (Tuta absoluta). Insect Biochem Mol Biol 42:506–513CrossRefPubMedGoogle Scholar
  13. He Y, Zhang J, Chen J (2014) Effect of synergists on susceptibility to chlorantraniliprole in field populations of chilo suppressalis (Lepidoptera: Pyralidae). J Econ Entomol 107:791–796CrossRefPubMedGoogle Scholar
  14. IRAC (2011) Tuta absoluta-The Tomato Leafminer or Tomato Borer: Recommendations for sustainable and effective resistance management. Accessed Oct 2014)
  15. IRAC (2014) IRAC MoA Classification Scheme (Version 7.3.1). Accessed Oct 2014
  16. Lahm GP, Stevenson TM, Selby TP, Freudenberger JH, Cordova D, Flexner L, Bellin CA, Dubas CM, Smith BK, Hughes KA, Hollingshaus JG, Clark CE, Benner EA (2007) Rynaxypyr™: a new insecticidal anthranilic diamide that acts as a potent and selective ryanodine receptor activator. Bioorg Med Chem Lett 17:6274–6279CrossRefPubMedGoogle Scholar
  17. Larson J, Redmond C, Potter D (2014) Impacts of a neonicotinoid, neonicotinoid–pyrethroid premix, and anthranilic diamide insecticide on four species of turf-inhabiting beneficial insects. Ecotoxicology 23:252–259CrossRefPubMedGoogle Scholar
  18. Lietti MMM, Botto E, Alzogaray RA (2005) Insecticide resistance in Argentine populations of Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae). Neotrop Entomol 34:113–119CrossRefGoogle Scholar
  19. Mollá O, Biondi A, Alonso-Valiente M, Urbaneja A (2014) A comparative life history study of two mirid bugs preying on Tuta absoluta and Ephestia kuehniella eggs on tomato crops: implications for biological control. Biocontrol 59:175–183CrossRefGoogle Scholar
  20. Ribeiro LMS, Wanderley-Teixeira V, Ferreira HN, Teixeira ÁAC, Siqueira HAA (2014) Fitness costs associated with field-evolved resistance to chlorantraniliprole in Plutella xylostella (Lepidoptera: Plutellidae). Bull Entomol Res 104:88–96CrossRefPubMedGoogle Scholar
  21. Roditakis E, Grispou M, Morou E, Kristoffersen JB, Roditakis NE, Nauen R, Vontas J, Tsagkarakou A (2009) Current status of insecticide resistance in Q biotype Bemisia tabaci populations from Crete. Pest Manag Sci 65:313–322CrossRefPubMedGoogle Scholar
  22. Roditakis E, Skarmoutsou C, Staurakaki M (2013a) Toxicity of insecticides to populations of tomato borer Tuta absoluta (Meyrick) from Greece. Pest Manag Sci 69:834–840CrossRefPubMedGoogle Scholar
  23. Roditakis E, Skarmoutsou C, Staurakaki M, del Rosario Martínez-Aguirre M, García-Vidal L, Bielza P, Haddi K, Rapisarda C, Rison J-L, Bassi A, Teixeira LA (2013b) Determination of baseline susceptibility of European populations of Tuta absoluta (Meyrick) to indoxacarb and chlorantraniliprole using a novel dip bioassay method. Pest Manag Sci 69:217–227CrossRefPubMedGoogle Scholar
  24. Sakuma M (1998) Probit analysis of preference data. Appl Entomol Zool 33:339–347Google Scholar
  25. Silva GA, Picanço MC, Bacci L, Crespo ALB, Rosado JF, Guedes RNC (2011) Control failure likelihood and spatial dependence of insecticide resistance in the tomato pinworm, Tuta absoluta. Pest Manag Sci 67:913–920CrossRefPubMedGoogle Scholar
  26. Siqueira HAA, Guedes RNC, Picanco MC (2000a) Cartap resistance and synergism in populations of Tuta absoluta (Lep., Gelechiidae). J Appl Entomol 124:233–238CrossRefGoogle Scholar
  27. Siqueira HAA, Guedes RNC, Picanco MC (2000b) Insecticide resistance in populations of Tula absoluta (Lepidoptera: Gelechiidae). Agric For Entomol 2:147–153CrossRefGoogle Scholar
  28. Siqueira HAA, Guedes RNC, Fragoso DB, Magalhaes LC (2001) Abamectin resistance and synergism in Brazilian populations of Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae). Int J Pest Manag 47:247–251CrossRefGoogle Scholar
  29. Sparks TC (2013) Insecticide discovery: an evaluation and analysis. Pestic Biochem Physiol 107:8–17CrossRefPubMedGoogle Scholar
  30. Steinbach D, Moritz G, Schorn C, Nauen R (2014) Genetics and toxicology of diamide insecticide resistance in diamondback moth, with special reference to fitness cost. In: Xth European Congress of Entomology, pp. P319, 3–8 August, University of York, YorkGoogle Scholar
  31. Su J, Lai T, Li J (2012) Susceptibility of field populations of Spodoptera litura (Fabricius) (Lepidoptera: Noctuidae) in China to chlorantraniliprole and the activities of detoxification enzymes. Crop Protect 42:217–222CrossRefGoogle Scholar
  32. Teixeira LA, Andaloro JT (2013) Diamide insecticides: global efforts to address insect resistance stewardship challenges. Pestic Biochem Physiol 106:76–78CrossRefGoogle Scholar
  33. Tohnishi M, Nakao H, Furuya T, Seo A, Kodama H, Tsubata K, Fujioka S, Hirooka T, Nishimatsu T (2005) Flubendiamide, a novel insecticide highly active against lepidopterous insect pests. J Pestic Sci 30:354–360CrossRefGoogle Scholar
  34. Troczka B, Zimmer CT, Elias J, Schorn C, Bass C, Davies TGE, Field LM, Williamson MS, Slater R, Nauen R (2012) Resistance to diamide insecticides in diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae) is associated with a mutation in the membrane-spanning domain of the ryanodine receptor. Insect Biochem Mol Biol 42:873–880CrossRefPubMedGoogle Scholar
  35. Tsagkarakou A, Nikou D, Roditakis E, Sharvit M, Morin S, Vontas J (2009) Molecular diagnostics for detecting pyrethroid and organophosphate resistance mutations in the whitefly Bemisia tabaci (Hemiptera: Aleyrodidae). Pestic Biochem Physiol 94:49–54CrossRefGoogle Scholar
  36. Uchiyama T, Ozawa A (2014) Rapid development of resistance to diamide insecticides in the smaller tea tortrix, Adoxophyes honmai (Lepidoptera: Tortricidae), in the tea fields of Shizuoka Prefecture, Japan. Appl Entomol Zool 49:1–6CrossRefGoogle Scholar
  37. Wang X, Wu Y (2012) High levels of resistance to chlorantraniliprole evolved in field populations of Plutella xylostella. J Econ Entomol 105:1019–1023CrossRefPubMedGoogle Scholar
  38. Wang X, Khakame SK, Ye C, Yang Y, Wu Y (2013) Characterisation of field-evolved resistance to chlorantraniliprole in the diamondback moth, Plutella xylostella, from China. Pest Manag Sci 69:661–665CrossRefPubMedGoogle Scholar
  39. Wu M, Zhang S, Yao R, Wu S, Su J, Gao C (2014) Susceptibility of the rice stem borer, Chilo suppressalis (Lepidoptera: Crambidae), to flubendiamide in China. J Econ Entomol 107:1250–1255CrossRefPubMedGoogle Scholar
  40. Zappalà L, Siscaro G, Biondi A, Mollá O, González-Cabrera J, Urbaneja A (2012) Efficacy of sulphur on Tuta absoluta and its side effects on the predator Nesidiocoris tenuis. J Appl Entomol 136:401–409CrossRefGoogle Scholar
  41. Zappalà L, Biondi A, Alma A, Al-Jboory IJ, Arnò J, Bayram A, Chailleux A, El-Arnaouty A, Gerling D, Guenaoui Y, Shaltiel-Harpaz L, Siscaro G, Stavrinides M, Tavella L, Vercher Aznar R, Urbaneja A, Desneux N (2013) Natural enemies of the South American moth, Tuta absoluta, in Europe, North Africa and Middle East, and their potential use in pest control strategies. J Pest Sci 86:635–647CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Emmanouil Roditakis
    • 1
    Email author
  • Emmanouil Vasakis
    • 1
  • Maria Grispou
    • 1
  • Marianna Stavrakaki
    • 1
  • Ralf Nauen
    • 2
  • Magali Gravouil
    • 3
  • Andrea Bassi
    • 4
  1. 1.Plant Protection Institute of HeraklionHellenic Agricultural Organization ‘Demeter’ (former NAGREF)HeraklionGreece
  2. 2.Bayer Crop Science, R&D, Pest Control BiologyMonheimGermany
  3. 3.DuPont de Nemours ERDCNambsheimFrance
  4. 4.Du Pont de Nemours Italiana SrlCernusco sul NaviglioItaly

Personalised recommendations