Advertisement

Journal of Pest Science

, Volume 88, Issue 3, pp 533–541 | Cite as

Overwintering potential of the invasive leafminer Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) as a pest in greenhouse tomato production in Western Europe

  • Veerle Van Damme
  • Nick Berkvens
  • Rob Moerkens
  • Els Berckmoes
  • Lieve Wittemans
  • Raf De Vis
  • Hans Casteels
  • Luc Tirry
  • Patrick De Clercq
Original Paper

Abstract

The South American tomato leafminer Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) is a devastating pest in tomato crops. After having spread rapidly in the Mediterranean area since its first detection in 2006, it has recently become established in greenhouses in Western Europe. It was assumed that the low temperatures commonly associated with the winters in this area would prevent this exotic species from successful overwintering. However, the observed presence of T. absoluta at the start of the growing season in Belgium sparked a study on its potential to overwinter in Western Europe. In this study, the insect’s cold hardiness and overwintering potential was assessed by determining: (1) the supercooling point (SCP) of larvae, pupae, and adults, (2) the lower lethal time (LT) for these stages at 0 and 5 °C, and (3) the reproductive diapause incidence, as indicated by the reproductive performance of females reared at two temperatures (18 and 25 °C) and two photoperiods [16:8 and 8:16 (L:D) h]. The mean SCP recorded for pupae (−16.7 °C) was significantly higher than for adults (−17.8 °C) and larvae (−18.2 °C). Based on estimates of the LT adults demonstrated better cold hardiness than larvae and pupae at both 0 and 5 °C with the median LT of adults averaging 17.9 and 27.2 days, respectively. No reproductive diapause was observed under the tested regimes. The results of this study indicate that T. absoluta is likely to successfully overwinter between two successive tomato crops in commercial greenhouses in Western Europe.

Keywords

South American tomato pinworm Low temperature Cold hardiness Diapause Protected crops Tomato 

Notes

Acknowledgments

This study was financially supported by the Flemish Agency for Innovation by Science and Technology (Project Number 100888). We are grateful to Gert De Bondt, Sébastien Morio and Johan Witters for the technical help and the molecular and morphological identification of the collected T. absoluta to start the stock culture, respectively.

References

  1. Bale JS (1993) Classes of insect cold hardiness. Funct Ecol 7:751–753Google Scholar
  2. Bale JS, Hayward SA (2010) Insect overwintering in a changing climate. J Exp Biol 213:980–994CrossRefPubMedGoogle Scholar
  3. Bale JS, Harrington R, Clough MS (1988) Low temperature mortality of the peach-potato aphid Myzus persicae. Ecol Entomol 13:121–129CrossRefGoogle Scholar
  4. Barrientos ZR, Apablaza HJ, Norero SA, Estay PP (1998) Temperatura base y constante térmica de desarrollo de la polilla del tomate, Tuta absoluta (Lepidoptera: Gelechiidae). Cienc Invest Agrar 25:133–137Google Scholar
  5. Bennett LE, Lee RE (1989) Simulated winter to summer transition in diapause adults of the lady beetle (Hippodamia convergens): supercooling point is not indicative of cold-hardiness. Physiol Entomol 14:361–367CrossRefGoogle Scholar
  6. Bentancourt CM, Scatoni IB (1995) Descripción de los estados de desarrollo de la “Polilla del Tomate”, Scrobipalpuloides absoluta (Meyrick) (Lep., Gelechiidae). Boletín de Investigación 45:1–14Google Scholar
  7. Berckmoes E, Donkers L, Wittemans L, Moerkens R, Goen K, Van Damme V (2012) Stand van zaken Tuta absoluta op Vlaamse tomatenbedrijven: Tuta geeft wisselend schadebeeld. Proeftuinnieuws 14:26–27Google Scholar
  8. Berkvens N, Bale JS, Berkvens D, Tirry L, De Clercq P (2010) Cold tolerance of the harlequin ladybird Harmonia axyridis in Europe. J Insect Physiol 56:438–444CrossRefPubMedGoogle Scholar
  9. Caparros Megido R, Brostaux Y, Haubruge E, Verheggen FJ (2013) Propensity of the tomato leafminer, Tuta absoluta (Lepidoptera: Gelechiidae), to develop on four potato plant varieties. Am J Potato Res 90:255–260CrossRefGoogle Scholar
  10. Coelho MCF, França FH (1987) Biologia, quetotaxia da larva edescrição da pupa e adulto da traça-do-tomateiro. Pesq Agro Bras 22:129–135Google Scholar
  11. Cuthbertson AGS, Mathers JJ, Blackburn LF, Korycinska A, Luo W, Jacobson RJ, Northing P (2013) Population development of Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) under simulated UK glasshouse conditions. Insects 4:185–197CrossRefGoogle Scholar
  12. Denlinger DL (1991) Relationship between cold hardiness and diapause. In: Lee RE, Denlinger DL (eds) Insects at low temperature. Chapman & Hall, New York, pp 174–198CrossRefGoogle Scholar
  13. Desneux N, Wajnberg E, Wyckhuys KAG, Burgio G, Arpaia S, Narváez-Vasquez CA, González-Cabrera J, Catalán Ruescas D, Tabone E, Frandon J, Pizzol J, Poncet C, Cabello T, Urbaneja A (2010) Biological invasion of European tomato crops by Tuta absoluta: ecology, geographic expansion and prospects for biological control. J Pest Sci 83:197–215CrossRefGoogle Scholar
  14. Desneux N, Luna MG, Guillemaud T, Urbaneja A (2011) The invasive South American tomato pinworm, Tuta absoluta, continues to spread in Afro-Eurasia and beyond: the new threat to tomato world production. J Pest Sci 84:403–408CrossRefGoogle Scholar
  15. EPPO (2005) EPPO datasheets on quarantine pests: Tuta absoluta. EPPO Bull 35:434–435. http://www.eppo.int/QUARANTINE/insects/Tuta_absoluta/DS_Tuta_absoluta.pdf. Accessed 25 Mar 2014
  16. EPPO (2014) PQR—EPPO database on quarantine pests (available online). http://www.eppo.int. Accessed 25 Mar 2014
  17. Fernandez S, Montagne A (1990) Biología del minador del tomate, Scrobipalpula absoluta (Meyick). Bol Entomol Venez N S 5:89–99Google Scholar
  18. Finney DJ (1971) Probit Analysis, 3rd edn. Cambridge University Press, CambridgeGoogle Scholar
  19. Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotechnol 3:294–299PubMedGoogle Scholar
  20. Hart AJ, Tullett AG, Bale JS, Walters KFA (2002) Effects of temperature on the establishment potential of the predatory mite Amblyseius californicus McGregor (Acari: Phytoseiidae) in the UK. J Insect Physiol 48:593–599CrossRefPubMedGoogle Scholar
  21. Hatherly IS, Hart AJ, Tullett AGT, Bale JS (2005) Use of thermal data as screen for the establishment potential of non-native biocontrol agents in the UK. Biocontrol 50:687–698CrossRefGoogle Scholar
  22. IBM Corp. Released (2012) IBM SPSS Statistics for Windows, Version 21.0. IBM Corp., Armonk NYGoogle Scholar
  23. Lee MS, Albajes R, Eizaguirre M (2014) Mating behaviour of female Tuta absoluta (Lepidoptera: Gelechiidae): polyandry increases reproductive output. J Pest Sci 87:429–439CrossRefGoogle Scholar
  24. Luna MG, Sánchez NE, Pereyra PC, Nieves E, Savino V, Luft E, Virla E, Speranza S (2012) Biological control of Tuta absoluta in Argentina and Italy: evaluation of indigenous insects as natural enemies. EPPO Bull 42:260–267CrossRefGoogle Scholar
  25. McCullagh P, Nelder J (1989) Generalized linear models. Chapman & Hall, LondonCrossRefGoogle Scholar
  26. McDonald JR, Head J, Bale JS, Walters KFA (2000) Cold tolerance, overwintering and establishment potential of Thrips palmi. Physiol Entomol 25:159–166CrossRefGoogle Scholar
  27. Miranda MMM, Picanço M, Zanuncio JC, Guedes RNC (1998) Ecological life table of Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae). Biocontrol Sci Technol 8:597–606CrossRefGoogle Scholar
  28. Morey AC, Hutchison WD, Venette RC, Burkness EC (2012) Cold Hardiness of Helicoverpa zea (Lepidoptera: Noctuidae) pupae. Environ Entomol 41:172–179CrossRefPubMedGoogle Scholar
  29. Potting RPJ, van der Gaag DJ, Loomans A, van der Straten M, Anderson H, MacLeod A, Castrillón JMG, Cambra GV (2013) Tuta absoluta, tomato leaf miner moth or South American tomato moth—pest risk analysis for Tuta absoluta. Ministry of Agriculture, Nature and Food Quality, Plant Protection Service of the NetherlandsGoogle Scholar
  30. Roditakis E, Skarmoutsou C, Staurakaki M (2013) Toxicity of insecticides to populations of tomato borer Tuta absoluta (Meyrick) from Greece. Pest Manag Sci 69:834–840CrossRefPubMedGoogle Scholar
  31. Schneider-Orelli O (1947) Entomologisches Praktikum: einführung in die land- und forstwirtschaftliche Insektenkunde. Aarau, SauerländerGoogle Scholar
  32. Simon C, Frati F, Beckenbach A, Crespi B, Liu H, Flook P (1994) Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Ann Entomol Soc Am 87:651–701CrossRefGoogle Scholar
  33. Torres JB, Faria CA, Evangelista WS, Pratissoli D (2001) Within plant distribution of leaf miner Tuta absoluta (Meyrick) immatures in processing tomatoes, with notes on plant phenology. Int J Pest Manag 47:173–178CrossRefGoogle Scholar
  34. Urbaneja A, Vercher R, Navarro V, García Marí F, Porcuna JL (2007) La polilla del tomate, Tuta absoluta. Phytoma España 194:16–23Google Scholar
  35. Urbaneja A, González-Cabrera J, Arnó J, Gabarra R (2012) Prospects for the biological control of Tuta absoluta in tomatoes of the Mediterranean basin. Pest Manag Sci 68:1215–1222CrossRefPubMedGoogle Scholar
  36. Vercher R, Calabuig A, Felipe C (2010) Ecología, muestreos y umbrales de Tuta absoluta (Meyrick). Phytoma España 217:23–26Google Scholar
  37. Watanabe M (2002) Cold tolerance and myoinositol accumulation in overwintering adults of a lady beetle, Harmonia axyridis (Coleoptera: Coccinellidae). Eur J Entomol 99:5–9CrossRefGoogle Scholar
  38. Zappalà L, Biondi A, Alma A, Al-Jboory IJ, Arnò J, Bayram A, Chailleux A, El-Arnaouty A, Gerling D, Guenaoui Y, Shaltiel-Harpaz L, Siscaro G, Stavrinides M, Tavella L, Vercher Aznar R, Urbaneja A, Desneux N (2013) Natural enemies of the South American moth, Tuta absoluta, in Europe, North Africa and Middle East, and their potential use in pest control strategies. J Pest Sci 86:635–647CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Veerle Van Damme
    • 1
    • 2
  • Nick Berkvens
    • 2
  • Rob Moerkens
    • 3
  • Els Berckmoes
    • 4
  • Lieve Wittemans
    • 4
  • Raf De Vis
    • 4
  • Hans Casteels
    • 2
  • Luc Tirry
    • 1
  • Patrick De Clercq
    • 1
  1. 1.Laboratory of Agrozoology, Department of Crop Protection, Faculty of Bioscience EngineeringGhent UniversityGhentBelgium
  2. 2.Plant Sciences Unit, Crop ProtectionInstitute for Agricultural and Fisheries Research (ILVO)MerelbekeBelgium
  3. 3.Tomato ResearchProefcentrum HoogstratenHoogstratenBelgium
  4. 4.Research Station for Vegetable ProductionSint-Katelijne-WaverBelgium

Personalised recommendations