Advertisement

Journal of Pest Science

, Volume 87, Issue 4, pp 671–679 | Cite as

Acquisition capability of the grapevine Flavescence dorée by the leafhopper vector Scaphoideus titanus Ball correlates with phytoplasma titre in the source plant

  • Luciana GalettoEmail author
  • Dimitrios Miliordos
  • Chiara Roggia
  • Mahnaz Rashidi
  • Dario Sacco
  • Cristina Marzachì
  • Domenico Bosco
Original Paper

Abstract

Flavescence dorée (FD) is one of the most economically important grapevine diseases in Southern Europe, and it is associated with phytoplasmas, phloem-limited wall-less bacteria. Recovery from disease naturally occurs in infected grapevines during the following seasons after infection. The capability of the leafhopper vector Scaphoideus titanus to acquire FD phytoplasma (FDP) from recovered and infected grapevines of Barbera and Nebbiolo varieties was investigated in North-western Italy vineyards monitored from 2007 to 2011. Pathogen concentration was quantified by real-time PCR in FDP-infected grapevines and broad beans, also used as source plants under controlled conditions, to correlate acquisition capabilities and phytoplasma titre in source plants. S. titanus acquired FDP from infected, but not from recovered, grapevines. FDP titre was higher in Barbera than in Nebbiolo and higher in summer than in spring, and acquisition efficiency and pathogen titre in source plants were positively correlated, both in field and laboratory conditions. Recovered plants do not represent a source of inoculum for the vector and therefore do not contribute to FDP spread. The inability of recovered plants to serve as FDP acquisition sources for the vector as well as the effect of the season and of the two grapevine varieties on the FDP acquisition efficiency are relevant results to re-design disease management practices, especially since insecticide treatments against the vector are not fully effective, and newly designed successful control strategies are required.

Keywords

Vitis vinifera FD Recovery Barbera Nebbiolo 

Notes

Acknowledgments

This research is funded by the Piemonte Region with the projects: ‘Adoption of a multidisciplinary approach to study the grapevine agroecosystem: analysis of biotic and abiotic factors able to influence yield and quality’, ‘Studi su fitoplasmi della vite e loro vettori: sensibilità varietale e efficienza di acquisizione di Flavescenza dorata, caratterizzazione, diffusione e vettori di Legno nero, tecniche di riduzione del danno’. The authors declare that they have no conflict of interest.

References

  1. Angelini E, Clair D, Borgo M, Bertaccini A, Boudon-Padieu E (2001) Flavescence dorée in France and Italy—occurrence of closely related phytoplasma isolates and their near relationships to Palatinate grapevine yellows and an alder yellows phytoplasma. Vitis 40:79–86Google Scholar
  2. Belli G, Bianco PA, Conti M (2010) Grapevine yellows in Italy: past, present and future. J Plant Pathol 92:303–326Google Scholar
  3. Bellomo C, Carraro L, Ermacora P, Pavan F, Osler R, Frausin C, Governatori G (2007) Recovery phenomena in grapevines affected by grapevine yellows in Friuli Venezia Giulia. Bull Insectol 60:235–236Google Scholar
  4. Bosio G, Rossi A (2001) Ciclo biologico in Piemonte di Scaphoideus titanus. L’Informatore Agrario 21:75–78Google Scholar
  5. Bressan A, Spiazzi S, Girolami V, Boudon-Padieu E (2005) Acquisition efficiency of Flavescence dorée phytoplasma by Scaphoideus titanus Ball from infected tolerant or susceptible grapevine cultivars or experimental host plants. Vitis 44:143–146Google Scholar
  6. Camussi A, Möller F, Ottaviano E, Sari Gorla M (1995) Metodi statistici per la sperimentazione biologica, II edn. Zanichelli, Torino, p 496Google Scholar
  7. Caudwell A, Kuszala C, Larrue J, Bachelier JC (1972) Transmission de la Flavescence dorée de la fève à la fève par des cicadelles des genres Euscelis et Euscelidius. Ann Phytopathol No. hors série 181–189Google Scholar
  8. Caudwell A, Boudon-Padieu E, Kuszala C, Larrue J (1987) Biologie et étiologie de la Flavescence dorée. Recherches sur son diagnostic et sur les méthodes de lutte.In: Proceedings of the conference on grapevine Flavescence dorée, Vicenza Verona, Italy, May 28–29, pp 175–208Google Scholar
  9. Conover WJ, Iman RL (1981) Rank transformations as a bridge between parametric and nonparametric statistics. Am Stat 35:124–129Google Scholar
  10. Feil H, Feil WS, Purcell AH (2003) Effects of date of inoculation on the within-plant movement of Xylella fastidiosa and persistence of Pierce’s disease within field grapevines. Phytopathology 93:244–251PubMedCrossRefGoogle Scholar
  11. Foissac X, Wilson MR (2010) Current and possible future distributions of phytoplasma diseases and their vectors. In: Weintraub PG, Jones P (eds) Phytoplasmas: genomes. Plant hosts and vectors, CABI. Wallingford, pp 309–324Google Scholar
  12. Galetto L, Bosco D, Marzachì C (2005) Universal and group-specific real-time PCR diagnosis of flavescence dorée (16Sr-V), bois noir (16Sr-XII) and apple proliferation (16Sr-X) phytoplasmas from field-collected plant hosts and insect vectors. Ann Appl Biol 147:191–201CrossRefGoogle Scholar
  13. Gambino G, Boccacci P, Margaria P, Palmano S, Gribaudo I (2013) Hydrogen peroxide accumulation and transcriptional changes in grapevines recovered from Flavescence dorée disease. Phytopathology 103:776–784. doi: 10.1094/phyto-11-12-0309-r PubMedCrossRefGoogle Scholar
  14. Garau R, Tolu G, Prota VA, Sechi A (2004) Differential reactivity of grapevine cultivars to “Bois noir” infections in Sardinia. J Plant Pathol 86:320Google Scholar
  15. Garau R, Sechi A, Prota VA, Moro G (2007) Productive parameters in Chardonnay and Vermentino grapevines infected with “bois noir” and recovered in Sardinia. Bull Insectol 60:233–234Google Scholar
  16. Hogenhout SA, Oshima K, Ammar ED, Kakizawa S, Kingdom HN, Namba S (2008) Phytoplasmas: bacteria that manipulate plants and insects. Mol Plant Pathol 9:403–423PubMedCrossRefGoogle Scholar
  17. Lee IM, Gundersen DE, Hammond RW, Davis RE (1994) Use of mycoplasmalike organism (MLO) group-specific oligonucleotide primers for nested-PCR assays to detect mixed-MLO infections in a single host-plant. Phytopathology 84:559–566CrossRefGoogle Scholar
  18. Lherminier J, Courtois M, Caudwell A (1994) Determination of the distribution and multiplication sites of Flavescence dorée mycoplasma-like organisms in the host plant Vicia faba by ELISA and immunocytochemistry. Physiol Mol Plant Pathol 45:125–138CrossRefGoogle Scholar
  19. Margaria P, Palmano S (2011) Response of the Vitis vinifera L. cv. ‘Nebbiolo’ proteome to Flavescence dorée phytoplasma infection. Proteomics 11:212–224. doi: 10.1002/pmic.201000409 PubMedCrossRefGoogle Scholar
  20. Margaria P, Abbà S, Palmano S (2013) Novel aspects of grapevine response to phytoplasma infection investigated by a proteomic and phospho-proteomic approach with data integration into functional networks. BMC Genomics 14:38. doi: 10.1186/1471-2164-14-38 PubMedCentralPubMedCrossRefGoogle Scholar
  21. Martini M, Botti S, Marcone C, Marzachì C, Casati P, Bianco PA, Benedetti R, Bertaccini A (2002) Genetic variability among Flavescence dorée phytoplasmas from different origins in Italy and France. Mol Cell Probes 16:197–208PubMedCrossRefGoogle Scholar
  22. Marzachì C, Bosco D (2005) Relative quantification of chrysanthemum yellows (16SrI) phytoplasma in its plant and insect host using real-time polymerase chain reaction. Mol Biotechnol 30:117–127PubMedCrossRefGoogle Scholar
  23. Mori N, Pavan F, Reggiani N, Bacchiavini M, Mazzon L, Paltrinieri S, Bertaccini A (2012) Correlation of bois noir disease with nettle and vector abundance in northern Italy vineyards. J Pest Sci 85:23–28CrossRefGoogle Scholar
  24. Morone C, Boveri M, Giosué S, Gotta P, Rossi V, Scapin I, Marzachì C (2007) Epidemiology of Flavescence dorée in vineyards in northwestern Italy. Phytopathology 97:1422–1427PubMedCrossRefGoogle Scholar
  25. Musetti R, Di Toppi LS, Ermacora P, Favali MA (2004) Recovery in apple trees infected with the apple proliferation phytoplasma: an ultrastructural and biochemical study. Phytopathology 94:203–208PubMedCrossRefGoogle Scholar
  26. Musetti R, di Toppi LS, Martini M, Ferrini F, Loschi A, Favali MA, Osler R (2005) Hydrogen peroxide localization and antioxidant status in the recovery of apricot plants from European stone fruit yellows. Eur J Plant Pathol 112:53–61CrossRefGoogle Scholar
  27. Musetti R, Marabottini R, Badiani M, Martini M, di Toppi LS, Borselli S, Borgo M, Osler R (2007) On the role of H2O2 in the recovery of grapevine (Vitis vinifera cv. Prosecco) from Flavescence dorée disease. Funct Plant Biol 34:750–758CrossRefGoogle Scholar
  28. Osler R, Carraro L, Ermacora P, Ferrini F, Loi N, Loschi A, Martini M, Mutton PB, Refatti R (2003) Roguing: a controversial practice to eradicate grape yellows caused by phytoplasmas. In: Proceedings of the 14th meeting of the international council for the study of virus and virus–like diseases of the grapevine (ICVG), Locorotondo (BA), Italy, Sep 12–17, pp 68Google Scholar
  29. Osler R, Borselli S, Ermacora P, Loschi A, Martini M, Musetti R, Loi N (2014) Acquired tolerance in apricot plants that stably recovered from European stone fruit yellows. Plant Dis 98:492–496CrossRefGoogle Scholar
  30. Pavan F, Mori N, Bigot G, Zandigiacomo P (2012) Border effect in spatial distribution of Flavescence dorée affected grapevines and outside source of Scaphoideus titanus vectors. Bull Insectol 65:281–290Google Scholar
  31. Roggia C, Caciagli P, Galetto L, Pacifico D, Veratti F, Bosco D, Marzachì C (2013) Flavescence dorée phytoplasma titre in field-infected Barbera and Nebbiolo grapevines. Plant Pathol 63:31–41. doi: 10.1111/ppa.12068 CrossRefGoogle Scholar
  32. Romanazzi G, Murolo S (2008) Partial uprooting and pulling to induce recovery in Bois noir-infected grapevines. J Phytopathol 156:747–750. doi: 10.1111/j.1439-0434.2008.01424.x CrossRefGoogle Scholar
  33. Romanazzi G, D’Ascenzo D, Murolo S (2009) Field treatment with resistance inducers for the control of grapevine Bois noir. J Plant Pathol 91:677–682Google Scholar
  34. Romanazzi G, Murolo S, Feliziani E (2013) Effects of an innovative strategy to contain grapevine bois noir: field treatment with resistance inducers. Phytopathology 103:785–791. doi: 10.1094/phyto-01-13-0031-r PubMedCrossRefGoogle Scholar
  35. Salar P, Charenton C, Foissac X, Malembic-Maher S (2013) Multiplication kinetics of Flavescence dorée phytoplasma in broad bean. Effect of phytoplasma strain and temperature. Eur J Plant Pathol 135:371–381. doi: 10.1007/s10658-012-0093-3 CrossRefGoogle Scholar
  36. Saracco P, Bosco D, Veratti F, Marzachì C (2006) Quantification over time of chrysanthemum yellows phytoplasma (16Sr-I) in leaves and roots of the host plant Chrysanthemum carinatum (Schousboe) following inoculation with its insect vector. Physiol Mol Plant Pathol 67:212–219CrossRefGoogle Scholar
  37. Schneider B, Seemüller E, Smart CD, Kirkpatrick BC (1995) Phylogenetic classification of plant pathogenic mycoplasma-like organisms or phytoplasmas. In: Razin R, Tully JG (eds) Molecular and diagnostic procedures in mycoplasmology, vol I. Academic Press, San Diego, pp 369–380CrossRefGoogle Scholar
  38. Schvester D, Carle P, Montous G (1963) Transmission de la Flavescence dorée de la vigne par S. littoralis Ball. Ann Epiphyt 14:175–198Google Scholar
  39. Seemüller E, Kunze L, Schaper U (1984) Colonization behaviour of MLO, and symptom expression of proliferation-diseased apple trees and decline-diseased pear trees over a period of several years. J Plant Dis Prot 91:525–532Google Scholar
  40. Speich P, Méjean I, Noyer C, Thomas C, Gillet J, Cloquemin G, Clair D, Boudon-Padieu E (2006) Limited susceptibility of Syrah cv. to Flavescence dorée and Bois noir in South of France. In: Proceedings of the 15th meeting of the international council for the study of virus and virus-like diseases of the grapevine (ICVG), Stellenbosch, South Africa, April 3–7. pp 171–172Google Scholar
  41. SPSS for Windows (2011) Version 20.0.0. IBM CorpGoogle Scholar
  42. Swallow WH (1985) Group testing for estimating infection rates and probabilities of disease transmission. Phytopathology 75:882–889. doi: 10.1094/Phyto-75-882 CrossRefGoogle Scholar
  43. Untergrasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, Rozen SG (2012) Primer3—new capabilities and interfaces. Nucleic Acids Res 40:e115CrossRefGoogle Scholar
  44. Vitali M, Chitarra W, Galetto L, Bosco D, Marzachì C, Gullino ML, Spanna F, Lovisolo C (2013) Flavescence dorée phytoplasma deregulates stomatal control of photosynthesis in Vitis vinifera. Ann Appl Biol 162:335–346. doi: 10.1111/aab.12025 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Luciana Galetto
    • 1
    Email author
  • Dimitrios Miliordos
    • 2
  • Chiara Roggia
    • 2
  • Mahnaz Rashidi
    • 1
    • 2
  • Dario Sacco
    • 2
  • Cristina Marzachì
    • 1
  • Domenico Bosco
    • 2
  1. 1.Istituto per la Protezione Sostenibile delle Piante CNRTurinItaly
  2. 2.Dipartimento di Scienze Agrarie, Forestali e Agroalimentari (DISAFA)Università degli Studi di TorinoGrugliasco (TO)Italy

Personalised recommendations