Journal of Pest Science

, Volume 84, Issue 4, pp 471–477 | Cite as

Susceptibility of the Mexican bean beetle Epilachna varivestis Mulsant (Coleoptera: Coccinellidae) to endemic isolates of Beauveria bassiana (Balsamo) Vuillemin (Hypocreales: Clavicipitaceae)

  • Jaime A. Ocampo-Hernández
  • Patricia Tamez-Guerra
  • Samuel Pineda
  • Fernando Tamayo-Mejía
  • Ariel Guzmán-Franco
  • José I. Figueroa de la Rosa
  • Ana Mabel MartínezEmail author
Original Paper


Entomopathogenic fungi represent excellent candidates for biological insecticides. Among the many entomopathogenic fungi, Beauveria bassiana (Balsamo) Vuillemin (Hypocreales: Clavicipitaceae) is one of the most promising species. Here, we report the results of infection studies performed using four B. bassiana native isolates (Bb37, Bb38, Bb40, and Bb45) compared with the commercial product Mycotrol® (strain GHA) on adult Mexican bean beetle Epilachna varivestis Mulsant (Coleoptera: Coccinellidae), one of the most important pests of bean production in Mexico. First, single concentration (1 × 108 conidia mL−1) assays were carried out using all isolates applied using an immersion method. Examinations at 10 days after inoculation indicated that isolates Bb37, Bb38, and Bb40 significantly reduced adult survival, causing 60–75% mortality compared to the commercial strain GHA (33%) and control (29%). Second, using two selected isolates (Bb37 and Bb40), the mean lethal concentration values (LC50) were estimated for third instar larvae and adult E. varivestis. The LC50 values for Bb37 and Bb40 isolates decreased 5.26-fold and 3.19-fold, respectively, in third instars compared with adults. However, such difference for Bb40 isolate was not significant. Finally, an experiment, to compare the median survival time (MST) values between third instar and adult E. varivestis, was conducted using Bb37 and Bb40 at 1 × 109 conidia mL−1. MST values were significantly reduced against larvae (87 and 100 h) compared with adults (130 and 134 h) by Bb37 and Bb40, respectively. We conclude that native isolates of B. bassiana represent an important alternative for the control of E. varivestis. However, to demonstrate its effectiveness under field conditions, detailed studies are needed.


Beaveria bassiana Microbial pesticides Epilachna varivestis Phaseolus vulgaris 



We thank Violeta Elizalde-Blancas for laboratory assistance. This research was financially supported by the Coordinación de la Investigación Científica, Universidad Michoacana de San Nicolás de Hidalgo and the Comité Estatal de Sanidad Vegetal de Guanajuato (CESAVEG). J. A. O. was financialy supported by Consejo Nacional de Ciencia y Tecnología (CONACyT), Mexico. We also thank J. Valle (El Colegio de la Frontera Sur, Tapachula, Chiapas, Mexico) for assistance with statistical analysis. The manuscript was improved by the comments of Trevor Williams (Instituto de Ecología A.C., Xalapa, Veracruz).


  1. Acosta GJA, Rosales R, Navarrete R, López E (2000) Desarrollo de variedades mejoradas de frijol para condiciones de riego y temporal en México. Agric Téc Méx 26:79–98Google Scholar
  2. Aitkin M, Anderson D, Francis B, Hinde J (1989) Statistical modelling in GLIM. Oxford Science, OxfordGoogle Scholar
  3. Altre JA, Vandenberg JD (2001) Penetration of cuticle and proliferation in hemolymph by Paecilomyces fumosoroseus isolates that differ in virulence against lepidopteran larvae. J Invertebr Pathol 78:81–86PubMedCrossRefGoogle Scholar
  4. Barrigossi JA, Young LJ, Gotway CA, Hein GL, Higley LG (2001) Spatial and probability distribution of Mexican bean beetle (Coleoptera: Coccinelidae) eggs mass populations in dry bean. Environ Entomol 30:244–253CrossRefGoogle Scholar
  5. Barrigossi JAF, Hein GL, Higley LG (2003) Economic injury levels and sequential sampling plans for Mexican bean beetle (Coleoptera: Coccinelidae) on dry bean. Field and forage crops. J Econ Entomol 96:1160–1167PubMedCrossRefGoogle Scholar
  6. Butt TM, Ibrahim L, Clark SJ, Beckett A (1995) The germination behavior of Metarhizium anisopliae on the surface of aphid and flea beetle cuticles. Mycol Res 99:945–950CrossRefGoogle Scholar
  7. Cortez-Madrigal H, Alatorre-Rosas R, Mora-Aguliera G, Bravo-Mojica H, Ortíz-García CF, Aceves-Navarro LA (2003) Characterization of multisporic and monosporic isolates of Lecanicillium (=Verticillium) leacnii for the management of Toxoptera aurantii in cocoa. Biocontrol 48:321–334CrossRefGoogle Scholar
  8. Cottrell TE, Shapiro-Ilan DI (2008) Susceptibility of endemic and exotic North American Ladybirds (Coleoptera: Coccinellidae) to endemic fungal entomopathogens. Eur J Entomol 105:455–460Google Scholar
  9. Crisostomo J, Poprawski TJ, Legaspi BC (2000) Laboratory and yield evaluation of Beauveria bassiana against sugarcane stalkbores (Lepidoptera: Pyralidae) in the Lower Rio Grande Valley of Texas. J Econ Entomol 93:54–59CrossRefGoogle Scholar
  10. De la Rosa W, Alatorre-Rosas R, Barrera JF, Toreillo C (2000) Effect of Beauveria bassiana and Metarhizium anisopliae (Deuteromycetes) upon the coffee berry borer (Coleoptera: Scolytidae) under field conditions. J Econ Entomol 93:1409–1414CrossRefGoogle Scholar
  11. De Roode JC, Pansini R, Cheesman SJ, Helinski EH, Huijben S, Wargo AR, Bell AS, Chan BHK, Walliker D, Read AF (2005) Virulence and competitive ability in genetically diverse malaria infections. PNAS 102:7624–7628PubMedCrossRefGoogle Scholar
  12. Devi KU, Padmavathi J, Rao CUM, Khan AAP, Mohan MC (2008) A study of host specificity in the entomophatogenic fungus Beauveria bassiana (Hypocreales, Clavicipitacea). Biocontrol Sci Technol 18:975–989CrossRefGoogle Scholar
  13. Echeverri-Molina, Santolamazza-Carbone S (2010) Toxicity of synthetic and biological insecticides against adults of the eucalyptus snout-beetle Gonipterus scutellatus Gyllenhal (Coleoptera: Curculionidae). J Pest Sci 83:297–305CrossRefGoogle Scholar
  14. Edgington S, Segura H, de la Rosa W, Williams T (2000) Photoprotection of Beauveria bassiana: testing simple formulations for control of the coffee berry borer. Int J Pest Manag 46:169–176CrossRefGoogle Scholar
  15. España LMP (2000) Caracterización enzimática de aislados de Beauveria bassiana (Deuteromycotina: Hyphomycetes), y su virulencia sobre Epilachna varivestis (Coleoptera: Coccinellidae). Dissertation, Facultad de Ciencias Biológicas y Agropecuarias. Universidad de Colima, MexicoGoogle Scholar
  16. Fan Y, Groden E, Liebman M, Alford AR (1993) Response of dry bean yield to injury by Mexican bean beetle (Coleoptera: Coccinellidae) in low-input and conventional cropping systems. J Econ Entomol 86:1574–1578Google Scholar
  17. Farrar RR, Ridgway RL (1999) Quantifying time-mortality relationships for nuclear polyhedrosis viruses when survivors are present. Environ Entomol 27:1289–1296Google Scholar
  18. Feng MG, Poprawski TJ, Khachatourians GG (1994) Production, formulation and application of the entomopathogenic fungus Beauveria bassiana for insect control. Biocontrol Sci Technol 4:3–34CrossRefGoogle Scholar
  19. Fieller EC (1944) A fundamental formula in the statistics of biological assay, and some applications. Quart J Pharm Pharmacol 17:117–123Google Scholar
  20. García-Gutierrez GC, Medrano-Roland H, Morales-Castro J, Hernández-Valdéz V (1999) Toxicological assessment of Beauveria bassiana against Mexican bean beetle (Coleoptera: Coccinellidae). Southwestern Entomol 24:255–260Google Scholar
  21. Goettel MS, Inglis GD (1997) Fungi: hyphomycetes. Manual of techniques in insect. In: Lacey LA (ed) Manual of techniques in insect pathology. Academic Press, London, pp 213–249Google Scholar
  22. Ho WC, Ko WH (1997) A simple method for obtaining single-spore isolates of fungi. Bot Bull Acad Sin 38:41–44Google Scholar
  23. Holder DJ, Keyhani NO (2005) Adhesion of the Entomopathogenic fungus Beauveria (Cordyceps) bassiana to substrata. Appl Environ Microbiol 71:5260–5266PubMedCrossRefGoogle Scholar
  24. Hosmer DW, Lemeshow S (1999) Applied survival analysis. Wiley, New YorkGoogle Scholar
  25. Humber RA (1997) Fungi: identification. In: Lacey LA (ed) Manual of techniques in insect pathology. Academic Press, London, pp 53–185Google Scholar
  26. Lacey LA, Frutos R, Kaya KH, Vails P (2001) Insect pathogens as biological control agents: do they have a future? Biol Control 21:230–248CrossRefGoogle Scholar
  27. Maketon M, Orosz-Coghlan P, Hotaga D (2009) Laboratory and field evaluation of Beauveria bassiana for controlling mulberry whitefly Pealius mori Takahashi (Homoptera: Aleyrididae) in mulberry (Morus alba Linn). J Pest Sci 82:252–259CrossRefGoogle Scholar
  28. Numerical Algorithms Group (1993) The GLIM system: release 4 manual. Clerendon Press, OxfordGoogle Scholar
  29. Payne R, Murray D, Harding S, Baird D, Soutar D, Lane P (2003) GenStat for Windows, 7th edn. VSN International, OxfordGoogle Scholar
  30. Pineda S, Alatorre-Rosas R, Schneider MI, Martinez AM (2007) Pathogenicity of two entomopathogenic fungi on Trialeurodes vaporariorum and field evaluation of a Paecilomyces fumosoroseus isolate. Southwestern Entomol 32:43–52CrossRefGoogle Scholar
  31. Pinto VM, Vera GJ, Landois LL, Leyva JL (2002) Simulación de la dinámica poblacional de la conchuela del frijol, Epilachna varivestis Muls., mediante un modelo fenológico de desarrollo acumulativo. Agrociencia 36:115–122Google Scholar
  32. Pinto VM, Cruz PO, Ramírez S, Solís JF, Castillo LE (2004) Evaluación de alternativas para el manejo integrado de plagas del frijol ejotero en Chapingo, México. Rev Fitot Mex 27:385–389Google Scholar
  33. Posada FJ, Vega FE (2005) A new method to evaluate the biocontrol potencial of single spore isoletes of fungal entomopathogens. J Insect Sci 5:1–10Google Scholar
  34. Read AF, Taylor LH (2001) The ecology of genetically diverse infections. Science 292:1099–1102PubMedCrossRefGoogle Scholar
  35. Riddick EW, Cottrell TE, Kidd KA (2009) Natural enemies of the coccinellidae: parasites, pathogens, and parasitoids. Biol Control 51:306–312CrossRefGoogle Scholar
  36. Roy HE, Brown PMJ, Rothery P, Ware RL, Majerus MEN (2008) Interactions between the fungal pathogen Beauveria bassiana and three species of coccinellids: Hamonia axyridis, Coccinella septempunctata and Adalia bipunctata. Biocontrol 53:265–276CrossRefGoogle Scholar
  37. Samuels IR, Coracini LD, Martins dos Santos AC, Gava ATC (2002) Infection of Blissus antillus (Hemiptera: Lygaeidae) eggs by the entomopathogenic fungi Metarhizium anisopliae and Beauveria bassiana. Biol Control 23:269–273CrossRefGoogle Scholar
  38. Sánchez-Arroyo H (2007) Mexican bean beetle, Epilachna varivestis Mulsant (Insecta: Coleoptera: Coccneliidae). University of Florida. Accessed 10 Feb 2010
  39. Schaafsma AW, Ablett GR (1994) Yield loss response of navy bean to partial or total defoliation. J Prod Agric 7:202–205Google Scholar
  40. Shelton AM, Wang P, Zhato JZ, Roush RT (2007) Resistance to insect pathogens and strategies to manage resistance: an update. In: Lacey LA, Kaya HK (eds) Field manual of techniques in invertebrate pathology. Application and evaluation of pathogens for control of insects and other invertebrate pest. Springer, The Netherlands, pp 793–811Google Scholar
  41. Smith SF, Krischik VA (2000) Effects of biorational pesticides on four coccinellid species (Coleoptera: Coccinellidae) having potential as biological control agents in interiorscapes. J Econ Entomol 93:732–736PubMedCrossRefGoogle Scholar
  42. Todorova SI, Cloutier C, Côté JC, Coderreet D (2000) Pathogenicity of six isolates of Beauveria bassiana (Balsamo) Vuillemin (Deuteromycotina Hyphomycetes) to Perillus bioculatus (F.) (Hem., Pentatomidae). J Appl Entomol 126:182–185CrossRefGoogle Scholar
  43. Zimmermann G (2007) Review on safety of the entomopathogenic fungi Beauveria bassiana and Beauveria brongniartii. Biocontrol Sci Technol 17:553–596CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Jaime A. Ocampo-Hernández
    • 1
    • 3
  • Patricia Tamez-Guerra
    • 2
  • Samuel Pineda
    • 1
  • Fernando Tamayo-Mejía
    • 3
  • Ariel Guzmán-Franco
    • 4
  • José I. Figueroa de la Rosa
    • 1
  • Ana Mabel Martínez
    • 1
    Email author
  1. 1.Instituto de Investigaciones Agropecuarias y ForestalesUniversidad Michoacana de San Nicolás de HidalgoTarímbaroMexico
  2. 2.Unidad de Formulación de Productos Biológicos, Facultad de Ciencias BiológicasUniversidad Autónoma de Nuevo LeónNuevo LeónMexico
  3. 3.Sanidad Vegetal, Secretaría de Desarrollo AgropecuarioCelayaMexico
  4. 4.Colegio de postgraduadosMontecillosMexico

Personalised recommendations