Journal of Pest Science

, Volume 84, Issue 4, pp 419–427 | Cite as

Comparison of biological parameters between the invasive B biotype and a new defined Cv biotype of Bemisia tabaci (Hemiptera: Aleyradidae) in China

  • Bao-Li Qiu
  • Fang Dang
  • Shao-Jian Li
  • Muhammad Z. Ahmed
  • Feng-Liang Jin
  • Shun-Xiang Ren
  • Andrew G. S. Cuthbertson
Original Paper

Abstract

The sweetpotato whitefly, Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) is a widely distributed and destructive agricultural pest on various host plants. The biology of two biotypes of B. tabaci: the invasive B and a new defined Cv biotype, on a range of host plants (hibiscus, laurel, poinsettia, collard, cucumber and tomato) were studied in the laboratory. Results revealed that the developmental periods of the B biotype immatures were not significantly different on the tested host plants except those between laurel and collard. The Cv biotype immatures developed significantly slower on cucumber and tomato than on the other plants. B. tabaci B biotype had the highest survivorship on collard (68.55%), and the lowest on laurel (33.24%), while the Cv biotype had the highest and lowest survivorships on laurel (61.63%) and tomato (36.74%). Host plants did not significantly affect the pre-ovipostion period regardless of biotype. The longest averaged longevity and highest fecundity of B biotype were both recorded on collard: 25.15 days and 143.0 eggs. The highest fecundity of Cv biotype was 196.49 eggs on laurel and its longest longevity was on hibiscus (19.62 days). The intrinsic rate of natural increase (rm) of B biotype on the three vegetables were all higher than those on the three ornamentals whereas the rm of Cv biotype on the three ornamentals were all higher that those on the three vegetables. Our research indicates that B. tabaci B and Cv biotypes have different host plant suitabilities. The three tested vegetables were more suitable for B biotype while the three tested ornamental plants were more suitable for Cv biotype. The potential mechanism for the different suitability of B and Cv biotypes on various host plants is also discussed.

Keywords

Bemisia tabaci Biology Host plant Life table Ornamental Vegetable 

References

  1. Ahmed MZ, Shatters RG, Ren SX, Jin GH, Mandour NS, Qiu B-L (2009) Genetic distinctions among the Mediterranean and Chinese populations of Bemisia tabaci Q biotype and their endosymbiont Wolbachia populations. J Appl Entomol 133:733–741CrossRefGoogle Scholar
  2. Ahmed MZ, Ren SX, Mandour NS, Marathi MN, Naveed M, Qiu B-L (2010a) Phylogenetic analysis of Bemisia tabaci (Hemiptera: Aleyrodidae) populations from cotton plants in Pakistan, China and Egypt. J Pest Sci 83:135–141CrossRefGoogle Scholar
  3. Ahmed MZ, Ren SX, Xue X, Li XX, Jin GH, Qiu B-L (2010b) Prevalence of endosymbionts in Bemisia tabaci populations and their in vivo sensitivity to antibiotics. Curr Microbiol 61:322–328PubMedCrossRefGoogle Scholar
  4. Ahmed MZ, Ren SX, Mandour NS, Greeff JM, Qiu B-L (2010c) Prevalence of Wolbachia supergroups A and B in Bemisia tabaci and some of its natural enemies. J Econ Entomol 103:1848–1859PubMedCrossRefGoogle Scholar
  5. Al-mazra’awi MS, Ateyyat M (2009) Insecticidal and repellent activities of medicinal plant extracts against the sweet potato whitefly, Bemisia tabaci (Hom.: Aleyrodidae) and its parasitoid Eretmocerus mundus (Hym.: Aphelinidae). J Pest Sci 82:149–154CrossRefGoogle Scholar
  6. Alon M, Benting J, Lueke B, Ponge T, Alon F, Morin S (2006) Multiple origins of pyrethroid resistance in sympatric biotypes of Bemisia tabaci (Hemiptera: Aleyrodidae). Insect Biochem Mol Biol 36:71–79PubMedCrossRefGoogle Scholar
  7. Baldin ELL, Beneduzzi RA (2010) Characterization of antibiosis and antixenosis to the whitefly silverleaf Bemisia tabaci B biotype (Hemiptera: Aleyrodidae) in several squash varieties. J Pest Sci 83:223–229CrossRefGoogle Scholar
  8. Bedford ID, Briddon RW, Brown JK, Rosell RC, Markham PG (1994) Geminivirus transmission and biological characterization of Bemisia tabaci (Gennadius) biotypes from different geographic regions. Ann Appl Biol 125:311–325CrossRefGoogle Scholar
  9. Bethke JA, Paine TD, Nuessly GS (1991) Comparative biology, morphometrics, and development of two populations of Bemisia tabaci (Homoptera: Aleyrodidae) on cotton and poinsettia. Ann Entomol Soc Am 84:407–411Google Scholar
  10. Birch LC (1948) The intrinsic rate of natural increase in an insect population. J Anim Ecol 17:15–26CrossRefGoogle Scholar
  11. Bird J (1957) A whitefly transmitted mosaic of Jatropha gossypifolia, Technical paper. Agri Exp Stn Univ Puerto Rico 22:1–35Google Scholar
  12. Bird J, Maramorosch K (1978) Viruses and virus diseases associated with whiteflies. Adv Virus Res 22:55–110PubMedCrossRefGoogle Scholar
  13. Boykin LM, Shatters RG Jr, Rosell RC, McKenzie CL, Bagnall RA, McKenzie CL, De Barro PJ, Frohlich DR (2007) Global relationships of Bemisia tabaci (Hemiptera: Aleyrodidae) revealed using Bayesian analysis of mitochondrial COI DNA sequences. Mol Phylogenet Evol 44:1306–1319PubMedCrossRefGoogle Scholar
  14. Brown JK, Czosnek H (2002) Whitefly transmission of plant viruses. Adv Bot Res 36:65–100CrossRefGoogle Scholar
  15. Byrne DN, Bellows TS Jr (1991) Whitefly biology. Ann Rev Entomol 36:431–457CrossRefGoogle Scholar
  16. Chou I (1949) Listo de la konataj Aleurodoj “Homoteroj” en cinio. Entomol Sin 3:1–18Google Scholar
  17. Chu D, Zhang YJ, Brown JK, Cong B, Xu BY, Wu QJ, Zhu GR (2006) The introduction of the exotic Q biotype of Bemisia tabaci from the Mediterranean region into China on ornamental crops. Florida Entomol 89:168–174CrossRefGoogle Scholar
  18. Cohen S, Duffus JE, Liu HY (1992) A new Bemisia tabaci (Gennadius) biotype in the southwestern United States and its role in silverleaf of squash and transmission of lettuce infectious yellows virus. Phytopathology 82:86–90CrossRefGoogle Scholar
  19. Costa HS, Brown JK (1991) Variation in biological characteristics and esterase patterns among populations of Bemisia tabaci, and the association of one population with silverleaf symptom induction. Entomol Exp Appl 61:211–219CrossRefGoogle Scholar
  20. Costa AS, Russell LM (1975) Failure of Bemisia tabaci to breed on cassava plants in Brazil (Homoptera: Aleyrodidae). Ciencia e cultura 27:388–390Google Scholar
  21. De Barro PJ (1995) Bemisia tabaci biotype B: a review of its biology, distribution and control. CSIRO Tech Paper 36:58Google Scholar
  22. De Barro PJ, Trueman JWH, Frohlich DR (2005) Bemisia argentifolii is a race of B-tabaci (Hemiptera : Aleyrodidae): the molecular genetic differentiation of B-tabaci populations around the world. Bull Entomol Res 95:193–203PubMedCrossRefGoogle Scholar
  23. De Barro PJ, Liu SS, Boykin LM, Dinsdale AB (2011) Bemisia tabaci: a statement of species status. Ann Rev Entomol 56:1–19CrossRefGoogle Scholar
  24. Dinsdale A, Cook L, Riginos C, Buckley YM, De Barro PJ (2010) Refined global analysis of Bemisia tabaci (Hemiptera: Sternorrhyncha: Aleyrodoidea: Aleyrodidae) mitochondrial cytochrome oxidase 1 to identify species level genetic boundaries. Ann Entomol Soc Am 103:196–208CrossRefGoogle Scholar
  25. Gelman DB, Blackburn MB, Hu JS (2002) Timing and ecdysteroid regulation of the molt in last instar greenhouse whiteflies (Trialeurodes vaporariorum). J Insect Physiol 48:63–73PubMedCrossRefGoogle Scholar
  26. Gelman DB, Pszczolkowski MA, Blackburn MB, Ramaswamy SB (2007) Ecdysteroids and juvenile hormones of whiteflies, important insect vectors for plant viruses. J Insect Physiol 53:274–284PubMedCrossRefGoogle Scholar
  27. Gill RJ (1990) The morphology of whiteflies. In: Gerling D (ed) Whiteflies: their bionomics, pest status and management. Intercept, Andover, pp 13–46Google Scholar
  28. Henneberry TJ, Jech LF, Hendrix DL (2000) Bemisia argentifolii (Homoptera: Aleyrodidae) honeydew and honeydew sugar relationships to sticky cotton. Southwestern Entomol 25:1–14Google Scholar
  29. Horowitz AR, Kontsedalov S, Khasdan V, Ishaaya I (2005) Biotypes B and Q of Bemisia tabaci and their relevance to neonicotinoid and pyriproxyfen resistance. Arch Insect Biochem Physiol 58:216–225PubMedCrossRefGoogle Scholar
  30. Jones DR (2003) Plant viruses transmitted by whitefly. Eur J Plant Pathol 109:195–219CrossRefGoogle Scholar
  31. Li SJ, Xue X, Ahmed MZ, Ren SX, Du YZ, Wu JH, Cuthbertson AGS, Qiu B-L (2011) Host plants and natural enemies of Bemisia tabaci (Hemiptera: Aleyrodidae) in China. Insect Sci 18:101–120CrossRefGoogle Scholar
  32. Lida H, Kitamura T, Honda K (2009) Comparison of egg-hatching rate, survival rate and development time of the immature stage between B- and Q-biotypes of Bemisia tabaci (Gennadius) (Homoptera: Aleyrodidae) on various agricultural crops. Appl Entomol Zool 44:267–273CrossRefGoogle Scholar
  33. Lin CS (1964) The theory and experiment study of animal population change - the innate capacity for increase of Tribolium confusum (H.). Acta Zool Sin 16:323–328Google Scholar
  34. Lin L, Ren SX (2005) Development and reproduction of ‘B’ biotype Bemisia tabaci (Gennadius) (Homoptera: Aleyrodidae) on four ornamentals. Insect Sci 12:1–9CrossRefGoogle Scholar
  35. Liu TX, Stansly PA (1998) Life history of Bemisia argentifolii (Homoptera: Aleyrodidae) on Hibiscus rosa-sinensis (Malvaceae). Florida Entomol 81:437–445CrossRefGoogle Scholar
  36. Liu SS, De Barro PJ, Xu J, Luan JB, Zang LS, Ruan YM, Wan FH (2007) Asymmetric mating interactions drive widespread invasion and displacement in a whitefly. Science 318:1769–1772PubMedCrossRefGoogle Scholar
  37. Moriones E, Navas-Castillo J (2010) Tomato yellow leaf curl disease epidemics. In: Stansly PA, Naranjo SE (eds) Bemisia: bionomics and management of a global pest. Springer, Dordrecht, pp 259–282Google Scholar
  38. Mound LA (1963) Host-correlated variation in Bemisia tabaci (Gennadius) (Homoptera: Aleyrodidae). Proc R Entomol Soc London 38:171–180CrossRefGoogle Scholar
  39. Mound LA, Halsey SH (1978) Whitefly of the World. A systematic catalogue of the Aleyrodidae (Homoptera) with host plant and natural enemy data. Wiley, Chichester, pp 1–340Google Scholar
  40. Perring TM (2001) The Bemisia tabaci species complex. Crop Prot 20:725–737CrossRefGoogle Scholar
  41. Qiu B-L, Ren SX, Wen SY, Mandour NS (2003a) Biotype identification of the populations of Bemisia tabaci (Homoptera: Aleyrodidae) in China using RAPD-PCR. Acta Entomol Sin 46:605–608Google Scholar
  42. Qiu B-L, Ren SX, Lin L, Musa PD (2003b) Effect of host plants on the development and reproduction of Bemisia tabaci (Hemiptera: Aleyrodidae). Acta Ecol Sin 23:1206–1211Google Scholar
  43. Qiu B-L, De Barro PJ, Ren SX (2005) Development, survivorship and reproduction of Eretmocerus sp. nr. furuhashii (Hymenoptera: Aphelinidae) parasitizing Bemisia tabaci (Hemiptera: Aleyrodidae) on glabrous and non-glabrous host plants. Bull Entomol Res 95:313–319PubMedCrossRefGoogle Scholar
  44. Qiu B-L, Ren SX, Wen SY, Mandour NS (2006) Population differentiation of three biotypes of Bemisia tabaci (Hemiptera: Aleyrodidae) in China by DNA polymorphism. J South China Agri Univ 27:29–33Google Scholar
  45. Qiu B-L, Chen YP, Liu L, Peng WL, Li XX, Ahmed MZ, Mathur V, Du YZ, Ren SX (2009a) Identification of three major Bemisia tabaci biotypes in China based on morphological and DNA polymorphisms. Prog Nat Sci 19:713–718CrossRefGoogle Scholar
  46. Qiu B-L, Harvey JA, Raaijmakers CE, Vet LEM, van Dam NM (2009b) Nonlinear effects of plant root and shoot jasmonic acid application on the performance of Pieris brassicae and its parasitoid Cotesia glomerata. Funct Ecol 23:496–505CrossRefGoogle Scholar
  47. SAS Institute (2003) SAS/STAT user’s guide. SAS Institute, CaryGoogle Scholar
  48. Tasi JH, Wang K (1996) Development and reproduction of Bemisia argentifolii (Homoptera: Aleyrodidae) on five host plants. Environ Entomol 25:810–816Google Scholar
  49. van Giessen WA, Mollema C, Elsey KD (1995) Design and use a simulation model to evaluate germplasm for antibiotic resistance to the greenhouse whitefly (Trialeurodes vaporariorum) and the sweet potato whitefly (Bemisia tabaci). Entomol Exp Appl 76:271–286CrossRefGoogle Scholar
  50. Wang K-H, Tsai JH (1996) Temperature effect on development and reproduction of silverleaf whitefly (Homoptera: Aleyrodidae). Ann Entomol Soc Am 89:375–384Google Scholar
  51. Wu XX, Li ZX, Hu DX, Shen ZR (2003) Identification of Chinese populations of Bemisia tabaci (Gennadius) by analyzing the ribosomal ITS1 sequence. Prog Nat Sci 13:276–281Google Scholar
  52. Zhang LP, Zhang YJ, Zhang WJ, Wu QJ, Xu BY, Chu D (2005) Analysis of genetic diversity among different geographical populations and determination of biotypes of Bemisia tabaci in China. J Appl Entomol 129:121–128CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Bao-Li Qiu
    • 1
  • Fang Dang
    • 1
  • Shao-Jian Li
    • 1
  • Muhammad Z. Ahmed
    • 1
  • Feng-Liang Jin
    • 1
  • Shun-Xiang Ren
    • 1
  • Andrew G. S. Cuthbertson
    • 2
  1. 1.Department of EntomologySouth China Agricultural UniversityGuangzhouChina
  2. 2.The Food and Environment Research AgencyYorkUK

Personalised recommendations