Advertisement

Cognitive Processing

, Volume 19, Issue 4, pp 557–561 | Cite as

Learning by heart—the relationship between resting vagal tone and metacognitive judgments: a pilot study

  • Judith Meessen
  • Stefan Sütterlin
  • Siegfried Gauggel
  • Thomas Forkmann
Short Communication

Abstract

Metacognitive awareness and resting vagally mediated heart rate variability (HRV) as a physiological trait marker of cognitive inhibitory control capacities are both associated with better well-being and seem to share a common neural basis. Executive functioning which is considered a prerequisite for delivering prospective metacognitive judgments has been found to be correlated with HRV. This pilot study addresses the question, whether metacognitive awareness and resting vagally mediated HRV are positively associated. A sample of 20 healthy participants was analyzed that completed a typical Judgment of Learning task after an electrocardiogram had been recorded. The root-mean-squares of successive differences were used to calculate vagally mediated HRV. Metacognitive awareness was measured by comparing the judgments of learning with the actual memory performance, yielding a deviation score. HRV was found to be positively correlated with metacognitive awareness. Results suggest that metacognitive abilities might relate to physiological trait markers of cognitive inhibitory control capacities. Further experimental studies are needed to investigate causal relations.

Keywords

Vagal tone Metacognition Awareness Memory 

Notes

Acknowledgements

This research project was supported by the START-program of the Faculty of Medicine, RWTH Aachen (Grant Number 691301) as well as the Interdisciplinary Center for Clinical Research (IZKF) Aachen within the Faculty of Medicine of RWTH Aachen University. All authors have no potential competing interest concerning submission of the manuscript “Learning by heart—the relationship between resting vagal tone and metacognitive judgments: a pilot study” to the journal “Cognitive Processing.”

Supplementary material

10339_2018_865_MOESM1_ESM.docx (120 kb)
Supplementary material 1 (DOCX 120 kb)

References

  1. Allen M et al (2017) Metacognitive ability correlates with hippocampal and prefrontal microstructure. Neuroimage 149:415–423.  https://doi.org/10.1016/j.neuroimage.2017.02.008 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Arbel R, Koren D, Klein E, Latzer Y (2013) The neurocognitive basis of insight into illness in anorexia nervosa: a pilot metacognitive study. Psychiatry Res 209:604–610.  https://doi.org/10.1016/j.psychres.2013.01.009 CrossRefPubMedGoogle Scholar
  3. Baayen RH, Piepenbrock R, Van Rijn H (eds) (1993) The CELEX lexical data base on CD-ROM. Linguistic Data Consortium, PhiladelphiaGoogle Scholar
  4. Baird B, Smallwood J, Gorgolewski KJ, Margulies DS (2013) Medial and lateral networks in anterior prefrontal cortex support metacognitive ability for memory and perception. J Neurosci 33:16657–16665.  https://doi.org/10.1523/jneurosci.0786-13.2013 CrossRefPubMedGoogle Scholar
  5. Berntson GG, Stowell JR (1998) ECG artifacts and heart period variability: don’t miss a beat! Psychophysiology 35(1):127–132.  https://doi.org/10.1111/1469-8986.3510127 CrossRefPubMedGoogle Scholar
  6. Do Lam AT, Axmacher N, Fell J, Staresina BP, Gauggel S, Wagner T, Olligs J, Weis S (2012) Monitoring the mind: the neurocognitive correlates of metamemory. PLoS ONE 7:e30009.  https://doi.org/10.1371/journal.pone.0030009 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Fernandez-Duque D, Baird JA, Posner MI (2000) Executive attention and metacognitive regulation. Conscious Cogn 9:288–307CrossRefPubMedGoogle Scholar
  8. Flavell JH (1979) Metacognition and cognitive monitoring—a new area of cognitive-developmental inquiry. Am Psychol 34:906–911CrossRefGoogle Scholar
  9. Forkmann T, Boecker M, Wirtz M, Eberle N, Westhofen M, Schauerte P et al (2009) Development and validation of the Rasch-based depression screening (DESC) using Rasch analysis and structural equation modelling. J Behav Ther Exp Psychiatry 40(3):468–478.  https://doi.org/10.1016/j.jbtep.2009.06.003 CrossRefPubMedGoogle Scholar
  10. Gillie BL, Vasey MW, Thayer JF (2013) Heart rate variability predicts control over memory retrieval. Psychol Sci 25:458–465.  https://doi.org/10.1177/0956797613508789 CrossRefPubMedGoogle Scholar
  11. Hansen AL, Johnsen BH, Thayer JE (2003) Vagal influence on working memory and attention. I J Psychophysiol 48:263–274CrossRefGoogle Scholar
  12. Hovland A, Pallesen S, Hammar A, Hansen AL, Thayer JF, Tarvainen MP, Nordhus IH (2012) The relationships among heart rate variability, executive functions, and clinical variables in patients with panic disorder. I J Psychophysiol 86:269–275.  https://doi.org/10.1016/j.ijpsycho.2012.10.004 CrossRefGoogle Scholar
  13. Hu X, Liu ZM, Li TT, Luo L (2016) Influence of cue word perceptual information on metamemory accuracy in judgement of learning. Memory 24(3):383–398.  https://doi.org/10.1080/09658211.2015.1009470 CrossRefPubMedGoogle Scholar
  14. Johnsen BH, Thayer JF, Laberg JC, Wormnes B, Raadal M, Skaret E et al (2003) Attentional and physiological characteristics of patients with dental anxiety. J Anxiety Disord 17(1):75–87.  https://doi.org/10.1016/s0887-6185(02)00178-0 CrossRefPubMedGoogle Scholar
  15. Kaufmann T, Sütterlin S, Schulz SM, Vögele C (2011) ARTiiFACT: a tool for heart rate artifact processing and heart rate variability analysis. Behav Res Methods 43:1161–1170.  https://doi.org/10.3758/s13428-011-0107-7 CrossRefPubMedGoogle Scholar
  16. Kemp AH, Quintana DS, Felmingham KL, Matthews S, Jelinek HF (2012) Depression, comorbid anxiety disorders, and heart rate variability in physically healthy, unmedicated patients: implications for cardiovascular risk. PLoS ONE 7(2):e30777.  https://doi.org/10.1371/journal.pone.0030777 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Komori M (2016) Effects of working memory capacity on metacognitive monitoring: a study of group differences using a listening span test. Front Psychol 7:285.  https://doi.org/10.3389/fpsyg.2016.00285 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Koriat A, Ma’ayan H (2005) The effects of encoding fluency and retrieval fluency on judgments of learning. J Mem Lang 52:478–492CrossRefGoogle Scholar
  19. Koval P, Ogrinz B, Kuppens P, Van den Bergh O, Tuerlinckx F, Sütterlin S (2013) Affective instability in daily life is predicted by resting heart rate variability. PLoS ONE 8:e81536.  https://doi.org/10.1371/journal.pone.0081536 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Ladegaard N, Larsen ER, Videbech P, Lysaker PH (2014) Higher-order social cognition in first-episode major depression. Psychiatry Res 216:37–43.  https://doi.org/10.1016/j.psychres.2013.12.010 CrossRefPubMedGoogle Scholar
  21. Lysaker PH et al (2014) Deficits in metacognitive capacity distinguish patients with schizophrenia from those with prolonged medical adversity. J Psychiatr Res 55:126–132.  https://doi.org/10.1016/j.jpsychires.2014.04.011 CrossRefPubMedGoogle Scholar
  22. Malik M, Bigger JT, Camm AJ, Kleiger RE, Malliani A, Moss AJ, Schwartz PJ (1996) Heart rate variability. Standards of measurement, physiological interpretation, and clinical use. Heart Rate Var Eur Heart J 17:354–381CrossRefGoogle Scholar
  23. Meessen J, Mainz V, Gauggel S, Volz-Sidiropoulou E, Sütterlin S, Forkmann T (2016) The relationship between interoception and metacognition. J Psychophysiol 30:76–86.  https://doi.org/10.1027/0269-8803/a000157 CrossRefGoogle Scholar
  24. Nelson TO, Dunlosky J (1991) When peoples judgments of learning (JOLS) are extremely accurate at predicting subsequent recall—the delayed-JOL effect. Psychol Sci 2:267–270CrossRefGoogle Scholar
  25. Pappens M, Schroijen M, Sütterlin S, Smets E, Van den Bergh O, Thayer JF, Van Diest I (2014) Resting heart rate variability predicts safety learning and fear extinction in an interoceptive fear conditioning paradigm. PLoS ONE 9:e105054.  https://doi.org/10.1371/journal.pone.0105054 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Pyc MA, Rawson KA, Aschenbrenner AJ (2014) Metacognitive monitoring during criterion learning: when and why are judgments accurate? Mem Cogn 42(6):886–897.  https://doi.org/10.3758/s13421-014-0403-4 CrossRefGoogle Scholar
  27. Reyes G, Silva JR, Jaramillo K, Rehbein L, Sackur J (2015) Self-knowledge dim-out: stress impairs metacognitive accuracy. PLoS ONE 10:e0132320.  https://doi.org/10.1371/journal.pone.0132320 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Rhodes MG, Tauber SK (2011) The influence of delaying judgments of learning on metacognitive accuracy: a meta-analytic review. Psychol Bull 137(1):131–148.  https://doi.org/10.1037/a0021705 CrossRefPubMedGoogle Scholar
  29. Schmitz J, Kramer M, Tuschen-Caffier B, Heinrichs N, Blechert J (2011) Restricted autonomic flexibility in children with social phobia. J Child Psychol Psychiatry 52:1203–1211.  https://doi.org/10.1111/j.1469-7610.2011.02417.x CrossRefPubMedGoogle Scholar
  30. Schuster AK, Fischer JE, Thayer JF, Mauss D, Jarczok MN (2016) Decreased heart rate variability correlates to increased cardiovascular risk. Int J Cardiol 203:728–730.  https://doi.org/10.1016/j.ijcard.2015.11.027 CrossRefPubMedGoogle Scholar
  31. Smith R, Thayer JF, Khalsa SS, Lane RD (2017) The hierarchical basis of neurovisceral integration. Neurosci Biobehav Rev 75:274–296.  https://doi.org/10.1016/j.neubiorev.2017.02.003 CrossRefPubMedGoogle Scholar
  32. Spielberger CD, Gorsuch RL, Lushene R, Vagg PR, Jacobs GA (eds) (1983) Manual for the State-Trait Anxiety Inventory. Consulting Psychologist Press, Paolo AltoGoogle Scholar
  33. Thayer JF, Lane RD (2000) A model of neurovisceral integration in emotion regulation and dysregulation. J Affect Disord 61:201–216CrossRefPubMedGoogle Scholar
  34. Thayer JF, Lane RD (2007) The role of vagal function in the risk for cardiovascular disease and mortality. Biol Psychol 74:224–242.  https://doi.org/10.1016/j.biopsycho.2005.11.013 CrossRefPubMedGoogle Scholar
  35. Thayer JF, Hansen AL, Saus-Rose E, Johnsen BH (2009) Heart rate variability, prefrontal neural function, and cognitive performance: the neurovisceral integration perspective on self-regulation, adaptation, and health. Ann Behav Med 37:141–153.  https://doi.org/10.1007/s12160-009-9101-z CrossRefPubMedGoogle Scholar
  36. Thayer JF, Ahs F, Fredrikson M, Sollers JJ III, Wager TD (2012) A meta-analysis of heart rate variability and neuroimaging studies: implications for heart rate variability as a marker of stress and health. Neurosci Biobehav Rev 36:747–756.  https://doi.org/10.1016/j.neubiorev.2011.11.009 CrossRefPubMedGoogle Scholar
  37. Xiu LC, Zhou RL, Jiang YH (2016) Working memory training improves emotion regulation ability: evidence from HRV. Physiol Behav 155:25–29CrossRefPubMedGoogle Scholar

Copyright information

© Marta Olivetti Belardinelli and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Clinical Psychology and PsychotherapyUniversity of CologneCologneGermany
  2. 2.Faculty of Health and Welfare SciencesØstfold University CollegeHaldenNorway
  3. 3.Division of Surgery and Clinical NeuroscienceOslo University HospitalOsloNorway
  4. 4.Institute of Medical Psychology and Medical SociologyUniversity Hospital of RWTH Aachen UniversityAachenGermany
  5. 5.Department of Clinical Psychology, Institute of PsychologyUniversity of Duisburg-EssenDuisburgGermany

Personalised recommendations