Cognitive Processing

, Volume 18, Issue 4, pp 447–459 | Cite as

Configured-groups hypothesis: fast comparison of exact large quantities without counting

  • Sébastien Miravete
  • André Tricot
  • Slava Kalyuga
  • Franck Amadieu
Research Report


Our innate number sense cannot distinguish between two large exact numbers of objects (e.g., 45 dots vs 46). Configured groups (e.g., 10 blocks, 20 frames) are traditionally used in schools to represent large numbers. Previous studies suggest that these external representations make it easier to use symbolic strategies such as counting ten by ten, enabling humans to differentiate exactly two large numbers. The main hypothesis of this work is that configured groups also allow for a differentiation of large exact numbers, even when symbolic strategies become ineffective. In experiment 1, the children from grade 3 were asked to compare two large collections of objects for 5 s. When the objects were organized in configured groups, the success rate was over .90. Without this configured grouping, the children were unable to make a successful comparison. Experiments 2 and 3 controlled for a strategy based on non-numerical parameters (areas delimited by dots or the sum areas of dots, etc.) or use symbolic strategies. These results suggest that configured grouping enables humans to distinguish between two large exact numbers of objects, even when innate number sense and symbolic strategies are ineffective. These results are consistent with what we call “the configured group hypothesis”: configured groups play a fundamental role in the acquisition of exact numerical abilities.


Number sense Configured groups External representation Numerical cognition Educational psychology 



Jean-Luc Parmentelot, Sylvain Begue, Josette Suspène, Sylvaine Mailho, Nathalis Burgues-Gensel, Pierre Villenave, Anne Terrière, Véronique Perrier, Céline Burgues, Gaëlle Imbert, Laurent Icher, Mrs Ortis, Mrs Peyrou, Denis Caillard, Nathalie Le Goffic, Nathalie Precigout, Nathalie Corpet, Julie Rozières, Mrs Barral, Mrs Cornic, Valérie Buosi, Marie-Pierre Caldeira, Olivier Carmouze, Stéphanie Sauvage, Aurélie Cazottes, Muriel Abeille, Catalina Martin Joga, parents and their children.


  1. Ansari D, Lyons IM, van Eimeren L, Xu F (2007) Linking visual attention and number processing in the brain: the role of the temporo-parietal junction in small and large symbolic and nonsymbolic number comparison. J Cogn Neurosci. doi: 10.1162/jocn.2007.19.11.1845 PubMedGoogle Scholar
  2. Barth H, La Mont K, Lipton J, Dehaene S, Kanwisher N, Spelke E (2006) Non-symbolic arithmetic in adults and young children. Cognition 98:199–222. doi: 10.1016/j.cognition.2004.09.011 CrossRefPubMedGoogle Scholar
  3. Burr DC, Anobile G, Turi M (2011) Adaptation affects both high and low (subitized) numbers under conditions of high attentional load. Seeing Perceiving 24(2):141–150. doi: 10.1163/187847511X570097 CrossRefPubMedGoogle Scholar
  4. Camos V (2003) Counting strategies from 5-years to adulthood: adaptation to structural features. Eur J Psychol Educ 18(3):251–265. doi: 10.1007/BF03173247 CrossRefGoogle Scholar
  5. Cantlon JF, Brannon EM, Carter EJ, Pelphrey KA (2006) Functional imaging of numerical processing in adults and 4-y-old children. PLoS Biol 4(5):e125. doi: 10.1371/journal.pbio.0040125 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Carey S (2009) Where our number concepts come from. J Philos 106(4):220–254. doi: 10.5840/jphil2009106418 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Chan WWL, Au TK, Tang J (2014) Strategic counting: a novel assessment of place-value understanding. Learn Instr 29:78–94. doi: 10.1016/j.learninstruc.2013.09.001 CrossRefGoogle Scholar
  8. Clements DH (1999) Subitizing: what is it? Why teach it? Teach Child Math 5:400–405Google Scholar
  9. Cohen DJ, Sarnecka BW (2014) Children’s number-line estimation shows development of measurement skills (not number representations). Dev Psychol 50(6):1640–1652. doi: 10.1037/a0035901 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Davidson K, Eng K, Barner D (2012) Does learning to count involve a semantic induction? Cognition 123(1):162–173. doi: 10.1016/j.cognition.2011.12.013 CrossRefPubMedGoogle Scholar
  11. Dehaene S (2011) The number sense: how the mind creates mathematics, revised and updated edition. Oxford University Press, OxfordGoogle Scholar
  12. Domahs F, Krinzinger H, Willmes K (2008) Mind the gap between both hands: evidence for internal finger-based number representations in children’s mental calculation. Cortex 44:359–367. doi: 10.1016/j.cortex.2007.08.001 CrossRefPubMedGoogle Scholar
  13. Feigenson L, Halberda J (2008) Conceptual knowledge increases infants’ memory capacity. PNAS 105(29):9926–9930. doi: 10.1073/pnas.0709884105 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Frank MC, Barner D (2012) Representing exact number visually using mental abacus. J Exp Psychol Gen 141(1):134–149. doi: 10.1037/a0024427 CrossRefPubMedGoogle Scholar
  15. Fuson KC, Wearne D, Hiebert JC, Murray HG, Human PG, Olivier AI, Carpenter TP, Fennema E (1997) Children’s conceptual structures for multidigit numbers and methods of multidigit addition and subtraction. J Res Math Educ 28(2):130–162. doi: 10.2307/749759 CrossRefGoogle Scholar
  16. Gilmore CK, McCarthy SE, Spelke ES (2007) Symbolic arithmetic knowledge without instruction. Nature 447:589–591. doi: 10.1038/nature05850 CrossRefPubMedGoogle Scholar
  17. Halberda J, Feigenson L (2008) Developmental change in the acuity of the ‘‘number sense”: the approximate number system in 3-, 4-, 5-, and 6-year-olds and adults. Dev Psychol 44(5):1457–1465. doi: 10.1037/a0012682 CrossRefPubMedGoogle Scholar
  18. Halberda J, Mazzocco MM, Feigenson L (2008) Individual differences in non-verbal number acuity correlate with maths achievement. Nature 455:665–668. doi: 10.1038/nature07246 CrossRefPubMedGoogle Scholar
  19. Hyde DC (2011) Two systems of non-symbolic numerical cognition. Front Hum Neurosci 5, Article 150. doi: 10.3389/fnhum.2011.00150
  20. Hyde DC, Khanum S, Spelke ES (2014) Brief non-symbolic, approximate number practice enhances subsequent exact symbolic arithmetic in children. Cognition 131(1):92–107. doi: 10.1016/j.cognition.2013.12.007 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Ifrah G (2000) The Universal History of Numbers: from prehistory to the invention of the computer. Wiley, HobokenGoogle Scholar
  22. Izard V, Dehaene S (2008) Calibrating the mental number line. Cognition 106:1221–1247. doi: 10.1016/j.cognition.2007.06.004 CrossRefPubMedGoogle Scholar
  23. Izard V, Pica P, Spelke ES, Dehaene S (2008) Exact equality and successor function: two key concepts on the path towards understanding exact numbers. Philos Psychol 21(4):491–505. doi: 10.1080/09515080802285354 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Izard V, Streri A, Spelke ES (2014) Toward exact number: young children use one-to-one correspondence to measure set identity but not numerical equality. Cogn Psychol 72:27–53. doi: 10.1016/j.cogpsych.2014.01.004 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Leslie AM, Gelman R, Gallistel CR (2008) The generative basis of natural number concepts. Trends Cogn Sci 12(6):213–218. doi: 10.1016/j.tics.2008.03.004 CrossRefPubMedGoogle Scholar
  26. Link T, Huber S, Nuerk HC, Moeller K (2014) Unbounding the mental number line-new evidence on children’s spatial representation of numbers. Front Psychol 4, Article 1021. doi: 10.3389/fpsyg.2012.00315
  27. McGuire P, Kinzie MB, Berch DB (2012) Developing number sense in pre-k with five-frames. Early Child Educ J 40:213–222CrossRefGoogle Scholar
  28. Obersteiner A, Reiss K, Ufer S (2013) How training on exact or approximate mental representations of number can enhance first-grade students’ basic number processing and arithmetic skills. Learn Instr 23:125–135. doi: 10.1016/j.learninstruc.2012.08.004 CrossRefGoogle Scholar
  29. Obersteiner A, Reiss K, Ufer S, Luwel K, Vershaffel L (2014) Do first graders make efficient use of external number representations? The case of the twenty-frame. Cogn Instr 32(4):353–373. doi: 10.1080/07370008.2014.948681 CrossRefGoogle Scholar
  30. Piazza M, Facoetti A, Trussardi AN, Berteletti I, Conte S, Lucangeli D, Dehaene S, Zorzi M (2010) Developmental trajectory of number acuity reveals a severe impairment in developmental dyscalculia. Cognition 116(1):33–41. doi: 10.1016/j.cognition.2010.03.012 CrossRefPubMedGoogle Scholar
  31. Pietroski P, Lidz J, Hunter T, Halberda J (2009) The Meaning of ‘most’: semantics, numerosity and psychology. Mind Lang 24(5):554–585. doi: 10.1111/j.1468-0017.2009.01374.x CrossRefGoogle Scholar
  32. Rosenberg RD, Feigenson L (2013) Infants hierarchically organize memory representations. Dev Sci 16(4):610–621. doi: 10.1111/desc.12055 CrossRefPubMedGoogle Scholar
  33. Rousselle L, Noël MP (2007) Basic numerical skills in children with mathematics learning disabilities: a comparison of symbolic vs non-symbolic number magnitude processing. Cognition 102(3):361–395CrossRefPubMedGoogle Scholar
  34. Sarnecka BW, Carey S (2008) How counting represents number: what children must learn and when they learn it. Cognition 108(3):662–674. doi: 10.1016/j.cognition.2008.05.007 CrossRefPubMedGoogle Scholar
  35. Sarnecka BW, Wright CE (2013) The idea of an exact number: children’s understanding of cardinality and equinumerosity. Cogn Sci 37(8):1493–1506. doi: 10.1111/cogs.12043 CrossRefPubMedGoogle Scholar
  36. Sato M, Cattaneo L, Rizzolatti G, Gallese V (2007) Number within our hands: modulation of corticospinal excitability of hand muscles during numerical judgment. J Cogn Neurosci 19(4):684–693. doi: 10.1162/jocn.2007.19.4.684 CrossRefPubMedGoogle Scholar
  37. Sayers J, Andrews P, Björklund Boistrup L (2016) The role of conceptual subitising in the development of foundational number sense. In: Meaney T, Helenius O, Johansson ML, Lange T, Wernberg A (eds) Mathematics education in the early years. Results from the POEM2 Conference, 2014. Springer, New York, pp 371–394. doi: 10.1007/978-3-319-23935-4
  38. Starkey GS, McCandliss BD (2014) The emergence of “groupitizing” in children’s numerical cognition. J Exp Child Psychol 126:120–137. doi: 10.1016/j.jecp.2014.03.006 CrossRefPubMedGoogle Scholar
  39. Sweller J, Ayres P, Kalyuga S (2011) Cognitive load theory. Springer, New YorkCrossRefGoogle Scholar
  40. Vasilyeva M, Laski EV, Ermakova A, Lai W-F, Jeong Y, Hachigian A (2015) Reexamining the language account of cross-national differences in base-10 number representations. J Exp Child Psychol 129:12–25CrossRefPubMedGoogle Scholar
  41. Venkatraman V, Ansari D, Chee MWL (2005) Neural correlates of symbolic and non-symbolic arithmetic. Neuropsychologia 43:744–753. doi: 10.1016/j.neuropsychologia.2004.08.005 CrossRefPubMedGoogle Scholar
  42. Vurpillot E (1968) The development of scanning strategies and their relation to visual differentiation. J Exp Child Psychol 6(4):632–650. doi: 10.1016/0022-0965(68)90108-2 CrossRefPubMedGoogle Scholar

Copyright information

© Marta Olivetti Belardinelli and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Sébastien Miravete
    • 1
  • André Tricot
    • 1
  • Slava Kalyuga
    • 2
  • Franck Amadieu
    • 1
  1. 1.CLLE InstituteUniversity of Toulouse 2ToulouseFrance
  2. 2.School of EducationUniversity of New South WalesSydneyAustralia

Personalised recommendations