Cognitive Processing

, Volume 18, Issue 4, pp 505–519 | Cite as

Betting on transitivity in probabilistic causal chains

Research Report
  • 66 Downloads

Abstract

Causal reasoning is crucial to people’s decision making in probabilistic environments. It may rely directly on data about covariation between variables (correspondence) or on inferences based on reasonable constraints if larger causal models are constructed based on local relations (coherence). For causal chains an often assumed constraint is transitivity. For probabilistic causal relations, mismatches between such transitive inferences and direct empirical evidence may lead to distortions of empirical evidence. Previous work has shown that people may use the generative local causal relations A → B and B → C to infer a positive indirect relation between events A and C, despite data showing that these events are actually independent (von Sydow et al. in Proceedings of the thirty-first annual conference of the cognitive science society. Cognitive Science Society, Austin, 2009, Proceedings of the 32nd annual conference of the cognitive science society. Cognitive Science Society, Austin, 2010, Mem Cogn 44(3):469–487, 2016). Here we used a sequential learning scenario to investigate how transitive reasoning in intransitive situations with negatively related distal events may relate to betting behavior. In three experiments participants bet as if they were influenced by a transitivity assumption, even when the data strongly contradicted transitivity.

Keywords

Causal induction Causal reasoning Transitivity Causal coherence hypothesis Betting 

Notes

Acknowledgements

We are grateful to Shirin Betzler, Julia Folz, Alina Greis, Kamala Grothe, Vera Hampel, Antonia Lange, and Alexander Wendt for their valuable work during data collection. Portions of Experiments 1 and 2 were presented at the 2014 Cognitive Science conference in Quebec, Canada (Hebbelmann and von Sydow 2014). This research and the empirical studies were supported by the Grant Sy 111/2 to Momme von Sydow from the Deutsche Forschungsgemeinschaft (DFG) as part of the priority program New Frameworks of Rationality (SPP 1516) as well as the DFG Grant FI294/23 to Klaus Fiedler.

Supplementary material

10339_2017_821_MOESM1_ESM.pdf (282 kb)
Supplementary material 1 (PDF 282 kb)

References

  1. Ahn W, Dennis M (2000) Induction of causal chains. In: Proceedings of the twenty-second annual conference of the cognitive science society. Lawrence Erlbaum Associates, Mahwah, p 19–24Google Scholar
  2. Arkes HR, Gigerenzer G, Hertwig R (2016) How bad is incoherence? Decision 3:20. doi:10.1037/dec0000043 CrossRefGoogle Scholar
  3. Baetu I, Baker AG (2009) Human judgments of positive and negative causal chains. J Exp Psychol Anim Behav Process 35(2):153–168. doi:10.1037/a0013764 CrossRefPubMedGoogle Scholar
  4. Cartwright N (2001) What is wrong with Bayes nets? Monist 84:242–264CrossRefGoogle Scholar
  5. Cartwright N (2006) From metaphysics to method: comments on manipulability and the causal Markov condition. Br J Philos Sci 57:197–218. doi:10.1093/bjps/axi156 CrossRefGoogle Scholar
  6. Fiedler K, von Sydow M (2015) Heuristics and biases: beyond Tversky and Kahneman’s (1974) judgment under uncertainty. In: Eysenck ME, Groome D (eds) Cognitive psychology: revisiting the classical studies. Sage, London, pp 146–161Google Scholar
  7. Gigerenzer G (1996) On narrow norms and vague heuristics: a reply to Kahneman and Tversky. Psychol Rev 103(3):592–596. doi:10.1037/0033-295X.103.3.592
  8. Gould SJ, Lewontin RC (1979) The spandrels of San Marco and the Panglossian paradigm: a critique of the adaptationist programme. Proc R Soc Lond B Biol Sci 205:581–598. doi:10.1098/rspb.1979.0086 CrossRefPubMedGoogle Scholar
  9. Hagmayer Y, Meder B (2013) Repeated causal decision making. J Exp Psychol Learn Mem Cogn 39:33–50. doi:10.1037/a0028643 CrossRefPubMedGoogle Scholar
  10. Hagmayer YA, Sloman SA (2009) Decision makers conceive of their choices as intervention. J Exp Psychol Gen 138:22–38. doi:10.1037/a0014585 CrossRefPubMedGoogle Scholar
  11. Hagmayer Y, Meder B, von Sydow M, Waldmann MR (2011) Category transfer in sequential causal learning: the unbroken mechanism hypothesis. Cogn Sci 35:842–873. doi:10.1111/j.1551-6709.2011.01179.x CrossRefPubMedGoogle Scholar
  12. Hausman D, Woodward J (1999) Independence, invariance, and the causal Markov condition. Br J Philos Sci 50:521–583. doi:10.1093/bjps/50.4.521 CrossRefGoogle Scholar
  13. Hebbelmann D, von Sydow M (2014) Betting on transitivity in an economic setting. In: Proceedings of the thirty-sixth annual conference of the cognitive science society. Cognitive Science Society, Austin, p 2339–2344Google Scholar
  14. Herrnstein RJ (1970) On the law of effect. J Exp Anal Behav 13:243–266. doi:10.1901/jeab.1970.13-243 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Jenkins HM, Ward WC (1965) Judgment of contingency between responses and outcomes. Psychol Monogr Gen Appl 79:1–17. doi:10.1037/h0093874 CrossRefGoogle Scholar
  16. Johnson SGB, Ahn W-K (2015) Causal networks or causal islands? Representation of mechanisms and the transitivity of causal judgment. Cogn Sci 39:1468–1503. doi:10.1111/cogs.12213 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Lagnado DA, Sloman SA (2006) Time as a guide to cause. J Exp Psychol Learn Mem Cogn 32:451–460. doi:10.1037/0278-7393.32.3.451 CrossRefPubMedGoogle Scholar
  18. Lagnado DA, Waldmann MR, Hagmayer Y, Sloman SA (2007) Beyond covariation: cues to causal structure. In: Gopnik A, Schulz L (eds) Causal learning: psychology, philosophy, and computation. Oxford University Press, Oxford, pp 86–100Google Scholar
  19. Lien Y, Cheng PW (2000) Distinguishing genuine from spurious causes: a coherence hypothesis. Cogn Psychol 40:87–137. doi:10.1006/cogp.1999.0724 CrossRefPubMedGoogle Scholar
  20. Mayrhofer R, Waldmann MR (2015) Agents and causes: dispositional intuitions as a guide to causal structure. Cogn Sci 39:65–95. doi:10.1111/cogs.12132 CrossRefPubMedGoogle Scholar
  21. Nilsson H, Andersson P (2010) Making the seemingly impossible appear possible: effects of conjunction fallacies in evaluations of bets on football games. J Econ Psychol 31(2):172–180. doi:10.1016/j.joep.2009.07.003
  22. Osman M (2010) Controlling uncertainty: a review of human behavior in complex dynamic environments. Psychol Bull 136(1):65–86. doi:10.1037/a0017815 CrossRefPubMedGoogle Scholar
  23. Pearl J (2000) Causality: models, reasoning, and inference. Cambridge University Press, CambridgeGoogle Scholar
  24. Rehder B, Burnett RC (2005) Feature inference and the causal structure of categories. Cogn Psychol 50:264–314. doi:10.1016/j.cogpsych.2004.09.002 CrossRefPubMedGoogle Scholar
  25. Rehder B, Waldmann M (2017) Failures of explaining away and screening off in described versus experienced causal learning scenarios. Mem Cogn. doi:10.3758/s13421-016-0662-3 Google Scholar
  26. Rottman BM, Hastie R (2014) Reasoning about causal relationships: inferences on causal networks. Psychol Bull 140(1):109. doi:10.1037/a0031903 CrossRefPubMedGoogle Scholar
  27. Sloman S (2005) Causal models: how people think about the world and its alternatives. Oxford University Press, CambridgeCrossRefGoogle Scholar
  28. Sober E (1988) The principle of the common cause. In: Fetzer J (ed) Probability and causality. Reidel, Dordrecht, pp 211–228CrossRefGoogle Scholar
  29. Sober E, Steel M (2013) Screening-off and causal incompleteness: a no-go theorem. Br J Philos Sci 64:513–550. doi:10.1093/bjps/axs021 CrossRefGoogle Scholar
  30. Spirtes P, Glymour C, Scheines R (2001) Causation, prediction, and search, 2nd edn. Springer, New YorkGoogle Scholar
  31. Spohn W (2001) Bayesian nets are all there is to causal dependence. In: Galavotti MC, Suppes P, Costantini D (eds) Stochastic dependence and causality. CSLI Publications, Stanford, pp 157–172Google Scholar
  32. von Sydow M (2014) ‘Survival of the fittest’ in Darwinian metaphysics—tautology or testable theory? In: Voigts E, Schaff B, Pietrzak-Franger M (eds) Reflecting on Darwin. Ashgate, Farnham. ISBN 978-1-4724-1407-6, p 199–222Google Scholar
  33. von Sydow M (2016) Towards a pattern-based logic of probability judgements and logical inclusion “Fallacies”. Think Reason 22(3):297–335. doi:10.1080/13546783.2016.1140678
  34. von Sydow M, Meder B, Hagmayer Y (2009) A transitivity heuristic of probabilistic causal reasoning. Proceedings of the thirty-first annual conference of the cognitive science society. Cognitive Science Society, Austin, pp 803–808Google Scholar
  35. von Sydow M, Meder B, Hagmayer Y, Waldmann MR (2010) How causal reasoning can bias empirical evidence. Proceedings of the 32nd annual conference of the cognitive science society. Cognitive Science Society, Austin, pp 2087–2092Google Scholar
  36. von Sydow M, Hagmayer Y, Meder B (2016) Transitive reasoning distorts induction in causal chains. Mem Cogn 44(3):469–487. doi:10.3758/s13421-015-0568-5 CrossRefGoogle Scholar
  37. Vulkan N (2000) An economist’s perspective on probability matching. J Econ Surv 14:101–118. doi:10.1111/1467-6419.00106 CrossRefGoogle Scholar
  38. Waldmann MR (1996) Knowledge-based causal induction. In: Shanks DR, Holyoak KJ, Medin DL (eds) The psychology of learning and motivation, vol 34. Causal learning. Academic, San Diego, pp 47–88Google Scholar
  39. Waldmann MR, Cheng PW, Hagmayer Y, Blaisdell AP (2008) Causal learning in rats and humans: a minimal rational model. In: Chater N, Oaksford M (eds) The probabilistic mind. Prospects for Bayesian cognitive science. University Press, Oxford, pp 453–484CrossRefGoogle Scholar
  40. Waldmann MR, Meder B, von Sydow M, Hagmayer Y (2010) The tight coupling between category and causal learning. Cogn Process 11:143–158. doi:10.1007/s10339-009-0267-x CrossRefPubMedGoogle Scholar

Copyright information

© Marta Olivetti Belardinelli and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Psychological InstituteUniversity of HeidelbergHeidelbergGermany
  2. 2.Munich Center for Mathematical Philosophy (MCMP)Ludwig-Maximilians-UniversitätMunichGermany

Personalised recommendations