Cognitive Processing

, Volume 17, Issue 3, pp 279–305 | Cite as

Predictive coding as a model of cognition

  • M. W. SpratlingEmail author
Research Report


Previous work has shown that predictive coding can provide a detailed explanation of a very wide range of low-level perceptual processes. It is also widely believed that predictive coding can account for high-level, cognitive, abilities. This article provides support for this view by showing that predictive coding can simulate phenomena such as categorisation, the influence of abstract knowledge on perception, recall and reasoning about conceptual knowledge, context-dependent behavioural control, and naive physics. The particular implementation of predictive coding used here (PC/BC-DIM) has previously been used to simulate low-level perceptual behaviour and the neural mechanisms that underlie them. This algorithm thus provides a single framework for modelling both perceptual and cognitive brain function.


Perception Cognition Categorisation Reading Word-superiority effect Reasoning Behavioural control Naive physics 



Thanks to the organisers of, and the participants at, the Lorentz Centre Workshop on Perspectives on Human Probabilistic Inference (May 2014) for discussions that inspired this work. Additional thanks to Bill Phillips for helpful comments on an earlier draft of this paper.


  1. Aha DW, Goldstone RL (1992) Concept learning and flexible weighting. In: Proceedings of the 14th annual conference of the Cognitive Science Society, pp 534–539Google Scholar
  2. Alink A, Schwiedrzik CM, Kohler A, Singer W, Muckli L (2010) Stimulus predictability reduces responses in primary visual cortex. J Neurosci 30:2960–2966CrossRefPubMedGoogle Scholar
  3. Anderson JR (1991) The adaptive nature of human categorization. Psychol Rev 98:409–429CrossRefGoogle Scholar
  4. Anderson JR, Betz J (2001) A hybrid model of categorization. Psychon Bull Rev 8(4):629–647CrossRefPubMedGoogle Scholar
  5. Anderson JR, Bothell D, Byrne MD, Douglass S, Lebiere C, Qin Y (2004) An integrated theory of the mind. Psychol Rev 111(4):1036–1060CrossRefGoogle Scholar
  6. Apps MAJ, Tsakiris M (2014) The free-energy self: a predictive coding account of self-recognition. Neurosci Biobehav Rev 41:85–97CrossRefPubMedGoogle Scholar
  7. Ashby FG, Alfonso-Reese LA, Turken AU, Waldron EM (1998) A neuropsychological theory of multiple systems in category learning. Psychol Rev 107:442–481CrossRefGoogle Scholar
  8. Bechtel W, Abrahamsen A (1991) Connectionism and the mind: an introduction to parallel processing in networks. Basil Blackwell, OxfordGoogle Scholar
  9. Broomhead DS, Lowe D (1988) Multivariable functional interpolation and adaptive networks. Complex Syst 2:321–355Google Scholar
  10. Bubic A, von Cramon DY, Schubotz RI (2010) Prediction, cognition and the brain. Front Hum Neurosci 4(25):1–15Google Scholar
  11. Chaaban I, Scheessele MR (2007) Human performance on the USPS database. Technical report, Indiana University, South Bend, IndianaGoogle Scholar
  12. Clark A (2013) Whatever next? predictive brains, situated agents, and the future of cognitive science. Behav Brain Sci 36(03):181–204CrossRefPubMedGoogle Scholar
  13. Cohen MR, Newsome WT (2008) Context-dependent changes in functional circuitry in visual area MT. Neuron 60(1):162–173CrossRefPubMedPubMedCentralGoogle Scholar
  14. de Cruys SV, Wagemans J (2011) Putting reward in art: a tentative prediction error account of visual art. i-Perception 2:1035–1062CrossRefPubMedPubMedCentralGoogle Scholar
  15. De Meyer K, Spratling MW (2011) Multiplicative gain modulation arises through unsupervised learning in a predictive coding model of cortical function. Neural Comput 23(6):1536–1567CrossRefPubMedGoogle Scholar
  16. De Meyer K, Spratling MW (2013) A model of partial reference frame transforms through pooling of gain-modulated responses. Cereb Cortex 23(5):1230–1239CrossRefPubMedGoogle Scholar
  17. Deneve S (2008) Bayesian spiking neurons I: inference. Neural Comput 20(1):91–117CrossRefPubMedGoogle Scholar
  18. Denison RN, Piazza EA, Silver MA (2011) Predictive context influences perceptual selection during binocular rivalry. Front Hum Neurosci 5(166)Google Scholar
  19. Egner T, Monti JM, Summerfield C (2010) Expectation and surprise determine neural population responses in the ventral visual stream. J Neurosci 30(49):16601–16608CrossRefPubMedPubMedCentralGoogle Scholar
  20. Erickson MA, Kruschke JK (1998) Rules and exemplars in category learning. J Exp Psychol Gen 127(2):107–140CrossRefPubMedGoogle Scholar
  21. Friston KJ (2005) A theory of cortical responses. Philos Trans R Soc Lond Ser B Biol Sci 360(1456):815–836CrossRefGoogle Scholar
  22. Fukushima K (1980) Neocognitron: a self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biol Cybern 36(4):193–202CrossRefPubMedGoogle Scholar
  23. Garrido MI, Kilner JM, Kiebel SJ, Friston KJ (2009) Dynamic causal modeling of the response to frequency deviants. J Neurophysiol 101:2620–2631CrossRefPubMedPubMedCentralGoogle Scholar
  24. Georghiades AS, Belhumeur PN, Kriegman DJ (2001) From few to many: illumination cone models for face recognition under variable lighting and pose. IEEE Trans Pattern Anal Mach Intell 23(6):643–660CrossRefGoogle Scholar
  25. Gilden DL, Proffitt DR (1989) Understanding collision dynamics. J Exp Psychol Hum Percept Perform 15(2):372–383CrossRefPubMedGoogle Scholar
  26. Goldstone RL, Kersten A (2003) Concepts and categorization. In: Healy AF, Proctor RW (eds) Comprehensive handbook of psychology, vol 4. Wiley, New York, pp 599–621Google Scholar
  27. Hohwy J, Roepstorff A, Friston K (2008) Predictive coding explains binocular rivalry: an epistemological review. Cognition 108(3):687–701CrossRefPubMedGoogle Scholar
  28. Hosoya T, Baccus SA, Meister M (2005) Dynamic predictive coding by the retina. Nature 436(7047):71–77CrossRefPubMedGoogle Scholar
  29. Huang Y, Rao RPN (2011) Predictive coding. WIREs Cogn Sci 2:580–593CrossRefGoogle Scholar
  30. Hull JJ (1994) A database for handwritten text recognition research. IEEE Trans Pattern Anal Mach Intell 16(5):550–554CrossRefGoogle Scholar
  31. Jehee JFM, Ballard DH (2009) Predictive feedback can account for biphasic responses in the lateral geniculate nucleus. PLoS Comput Biol 5(5):e1000373CrossRefPubMedPubMedCentralGoogle Scholar
  32. Jehee JFM, Rothkopf C, Beck JM, Ballard DH (2006) Learning receptive fields using predictive feedback. J Physiol Paris 100:125–132CrossRefPubMedPubMedCentralGoogle Scholar
  33. Kay J, Phillips WA (1997) Activation functions, computational goals and learning rules for local processors with contextual guidance. Neural Comput 9(4):895–910CrossRefGoogle Scholar
  34. Kay JW, Phillips WA (2011) Coherent infomax as a computational goal for neural systems. Bull Math Biol 73:344–372CrossRefPubMedGoogle Scholar
  35. Kilner JM, Friston KJ, Frith CD (2007) Predictive coding: an account of the mirror neuron system. Cogn Process 8(3):159–166CrossRefPubMedPubMedCentralGoogle Scholar
  36. Koster-Hale J, Saxe R (2013) Theory of mind: a neural prediction problem. Neuron 79(5):836–848CrossRefPubMedPubMedCentralGoogle Scholar
  37. Kruschke JK (1992) ALCOVE: an exemplar-based connectionist model of category learning. Psychol Rev 99(1):22–44CrossRefPubMedGoogle Scholar
  38. Kruschke JK (2005) Category learning. In: Lamberts K, Goldstone RL (eds) The handbook of cognition. Sage, London, pp 183–201Google Scholar
  39. Kumaran D, McClelland JL (2012) Generalization through the recurrent interaction of episodic memories: a model of the hippocampal system. Psychol Rev 119(3):573–616CrossRefPubMedPubMedCentralGoogle Scholar
  40. Lalanne L, van Assche M, Giersch A (2010) When predictive mechanisms go wrong: disordered visual synchrony thresholds in schizophrenia. Schizophr Bull 38(3):506–513CrossRefPubMedPubMedCentralGoogle Scholar
  41. Laughlin S (1990) Coding efficiency and visual processing. In: Blakemore C (ed) Vision: coding and efficiency, chapter 2. Cambridge University Press, Cambridge, pp 25–31Google Scholar
  42. Lawson RP, Rees G, Friston KJ (2014) An aberrant precision account of autism. Front Hum Neurosci 8(302)Google Scholar
  43. LeCun Y, Kavukvuoglu K, Farabet C (2010) Convolutional networks and applications in vision. In: Procedings of the international symposium on circuits and systems (ISCAS10). IEEEGoogle Scholar
  44. Lee KC, Ho J, Kriegman D (2005) Acquiring linear subspaces for face recognition under variable lighting. IEEE Trans Pattern Anal Mach Intell 27(5):684–698CrossRefPubMedGoogle Scholar
  45. Lee TS (2015) The visual systems internal model of the world. Proc IEEE 103(8):1359–1378CrossRefGoogle Scholar
  46. Love BC, Medin DL, Gureckis TM (2004) SUSTAIN: a network model of category learning. Psychol Rev 111:309–332CrossRefPubMedGoogle Scholar
  47. McClelland JL (2013) Integrating probabilistic models of perception and interactive neural networks: a historical and tutorial review. Front Psychol 4(503)Google Scholar
  48. McClelland JL (2014) Explorations in parallel distributed processing: a handbook of models, programs, and exercises. 2nd ednGoogle Scholar
  49. McClelland JL, Johnston JC (1977) The role of familiar units in perception of words and nonwords. Percept Psychophys 22(3):249–261CrossRefGoogle Scholar
  50. McClelland JL, Mirman D, Bolger DJ, Khaitan P (2014) Interactive activation and mutual constraint satisfaction in perception and cognition. Cogn Sci 38:1139–1189CrossRefPubMedGoogle Scholar
  51. McClelland JL, Rumelhart DE (1981) An interactive activation model of context effects in letter perception: Part 1. an account of basic findings. Psychol Rev 88:375–407CrossRefGoogle Scholar
  52. McClelland JL, Rumelhart DE, Hinton GE (1986) The appeal of parallel distributed processing. In: Rumelhart DE, McClelland JL, and The PDP Research Group (eds), Parallel distributed processing: explorations in the microstructures of cognition. vol 1, Foundations, chapter 1. MIT Press, Cambridge, MA, pp 3–44Google Scholar
  53. Medin DL, Schaffer MM (1978) Context theory of classification learning. Psychol Rev 85:207–238CrossRefGoogle Scholar
  54. Nosofsky RM, Clark SE, Shin HJ (1989) Rules and exemplars in categorization, identification, and recognition. J Exp Psychol Learn Memory Cogn 15(2):282–304CrossRefGoogle Scholar
  55. Nosofsky RM, Johansen MK (2000) Exemplar-based accounts of multiple-system phenomena in perceptual categorization. Psychon Bull Rev 7(3):375–402PubMedGoogle Scholar
  56. Nosofsky RM, Palmeri TJ, McKinley SC (1994) Rule-plus-exception model of classification learning. Psychol Rev 101(1):53–79CrossRefPubMedGoogle Scholar
  57. Pouget A, Sejnowski TJ (1997) Spatial transformations in the parietal cortex using basis functions. J Cogn Neurosci 9(2):222–237CrossRefPubMedGoogle Scholar
  58. Ramaswami M (2014) Network plasticity in adaptive filtering and behavioral habituation. Neuron 82(6):1216–1229CrossRefPubMedGoogle Scholar
  59. Rao RPN, Ballard DH (1999) Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects. Nat Neurosci 2(1):79–87CrossRefPubMedGoogle Scholar
  60. Riesenhuber M, Poggio T (1999) Hierarchical models of object recognition in cortex. Nat Neurosci 2(11):1019–1025CrossRefPubMedGoogle Scholar
  61. Rothman J, Cathala L, Steuber V, Silver RA (2009) Synaptic depression enables neuronal gain control. Nature 457:1015–1018CrossRefPubMedPubMedCentralGoogle Scholar
  62. Rumelhart DE, McClelland JL (1982) An interactive activation model of context effects in letter perception: Part 2. the contextual enhancement effect and some tests and extensions of the model. Psychol Rev 89(1):60CrossRefPubMedGoogle Scholar
  63. Rumelhart DE, McClelland JL, and The PDP Research Group (eds) (1986) Parallel distributed processing: explorations in the microstructures of cognition, vol 1, Foundations. MIT Press, CambridgeGoogle Scholar
  64. Runeson S, Vedeler D (1993) The indispensability of precollision kinematics in the visual perception of relative mass. Percept Psychophys 53(6):617–632CrossRefPubMedGoogle Scholar
  65. Salinas E (2004a) Context-dependent selection of visuomotor maps. BMC Neurosci 5:47CrossRefPubMedPubMedCentralGoogle Scholar
  66. Salinas E (2004b) Fast remapping of sensory stimuli onto motor actions on the basis of contextual modulation. J Neurosci 24(5):1113–1118CrossRefPubMedGoogle Scholar
  67. Sanborn A (2014) Testing Bayesian and heuristic predictions of mass judgments of colliding objects. Front Psychol 5(938)Google Scholar
  68. Sanborn AN, Griffiths TL, Navarro DJ (2010) Rational approximations to rational models: alternative algorithms for category learning. Psychol Rev 117(4):1144–1167CrossRefPubMedGoogle Scholar
  69. Sanborn AN, Mansinghka VK, Griffiths TL (2013) Reconciling intuitive physics and Newtonian mechanics for colliding objects. Psychol Rev 120(2):411–437CrossRefPubMedGoogle Scholar
  70. Selfridge OG (1955) Pattern recognition and modern computers. In: Proceedings of the western joint computer conference. ACM, pp 91–93Google Scholar
  71. Serre T, Wolf L, Bileschi S, Riesenhuber M, Poggio T (2007) Robust object recognition with cortex-like mechanisms. IEEE Trans Pattern Anal Mach Intell 29(3):411–426CrossRefPubMedGoogle Scholar
  72. Seth AK (2013) Interoceptive inference, emotion, and the embodied self. Trends Cogn Sci 17(11):656–663CrossRefGoogle Scholar
  73. Seth AK, Suzuki K, Critchley HD (2011) An interoceptive predictive coding model of conscious presence. Front Psychol 2(395)Google Scholar
  74. Smith EE, Patalano AL, Jonides J (1998) Alternative strategies of categorization. Cognition 65:167–196CrossRefPubMedGoogle Scholar
  75. Smith FW, Muckli L (2010) Nonstimulated early visual areas carry information about surrounding context. Proc Natl Acad Sci USA 107(46):20099–200103CrossRefPubMedPubMedCentralGoogle Scholar
  76. Smith JD, Minda JP (1998) Prototypes in the mist: the early epochs of category learning. J Exp Psychol Learn Memory Cogn 24:1411–1436CrossRefGoogle Scholar
  77. Spratling MW (2008a) Predictive coding as a model of biased competition in visual selective attention. Vision Res 48(12):1391–1408CrossRefPubMedGoogle Scholar
  78. Spratling MW (2008b) Reconciling predictive coding and biased competition models of cortical function. Front Comput Neurosci 2(4):1–8Google Scholar
  79. Spratling MW (2010) Predictive coding as a model of response properties in cortical area V1. J Neurosci 30(9):3531–3543CrossRefPubMedGoogle Scholar
  80. Spratling MW (2011) A single functional model accounts for the distinct properties of suppression in cortical area V1. Vision Res 51(6):563–576CrossRefPubMedGoogle Scholar
  81. Spratling MW (2012a) Predictive coding accounts for V1 response properties recorded using reverse correlation. Biol Cybern 106(1):37–49CrossRefPubMedGoogle Scholar
  82. Spratling MW (2012b) Predictive coding as a model of the V1 saliency map hypothesis. Neural Netw 26:7–28CrossRefPubMedGoogle Scholar
  83. Spratling MW (2012c) Unsupervised learning of generative and discriminative weights encoding elementary image components in a predictive coding model of cortical function. Neural Comput 24(1):60–103CrossRefPubMedGoogle Scholar
  84. Spratling MW (2013a) Distinguishing theory from implementation in predictive coding accounts of brain function. Behav Brain Sci 36(3):231–232CrossRefPubMedGoogle Scholar
  85. Spratling MW (2013b) Image segmentation using a sparse coding model of cortical area V1. IEEE Trans Image Process 22(4):1631–1643CrossRefPubMedGoogle Scholar
  86. Spratling MW (2014a) Classification using sparse representations: a biologically plausible approach. Biol Cybern 108(1):61–73CrossRefPubMedGoogle Scholar
  87. Spratling MW (2014b) Predictive coding. In: Jaeger D, Jung R (eds) Encycl Comput Neurosci. Springer, New York, NY, pp 1–5CrossRefGoogle Scholar
  88. Spratling MW (2014c) A single functional model of drivers and modulators in cortex. J Comput Neurosci 36(1):97–118CrossRefPubMedGoogle Scholar
  89. Spratling MW (2016) A neural implementation of Bayesian inference based on predictive coding (submitted)Google Scholar
  90. Spratling MW, De Meyer K, Kompass R (2009) Unsupervised learning of overlapping image components using divisive input modulation. Comput Intell Neurosci 2009(381457):1–19CrossRefGoogle Scholar
  91. Spratling MW, Johnson MH (2003) Exploring the functional significance of dendritic inhibition in cortical pyramidal cells. Neurocomputing 52–54:389–395CrossRefGoogle Scholar
  92. Srinivasan MV, Laughlin SB, Dubs A (1982) Predictive coding: a fresh view of inhibition in the retina. Proc R Soc Lond Ser B Biol Sci 216(1205):427–459CrossRefGoogle Scholar
  93. Summerfield C, Egner T (2009) Expectation (and attention) in visual cognition. Trends Cogn Sci 13(9):403–409CrossRefPubMedGoogle Scholar
  94. Todd JT, Warren WH (1982) Visual perception of relative mass in dynamic events. Perception 11:325–335CrossRefPubMedGoogle Scholar
  95. Van Boxtel JJAV, Lu H (2013) A predictive coding perspective on autism spectrum disorder s: a general comment on Pellicano and Burr (2012). Front Psychol 4(19)Google Scholar
  96. Vicovaro M, Burigana L (2014) Intuitive understanding of the relation between velocities and masses in simulated collisions. Visual Cogn 22(7):896–919CrossRefGoogle Scholar
  97. Wacongne C, Changeux J-P, Dehaene S (2012) A neuronal model of predictive coding accounting for the mismatch negativity. J Neurosci 32(11):3665–3678CrossRefPubMedGoogle Scholar

Copyright information

© Marta Olivetti Belardinelli and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of InformaticsKing’s College LondonStrand, LondonUK

Personalised recommendations