Cognitive Processing

, Volume 17, Issue 1, pp 27–37 | Cite as

Long-term meditation training induced changes in the operational synchrony of default mode network modules during a resting state

  • Andrew A. FingelkurtsEmail author
  • Alexander A. Fingelkurts
  • Tarja Kallio-Tamminen
Research Report


Using theoretical analysis of self-consciousness concept and experimental evidence on the brain default mode network (DMN) that constitutes the neural signature of self-referential processes, we hypothesized that the anterior and posterior subnets comprising the DMN should show differences in their integrity as a function of meditation training. Functional connectivity within DMN and its subnets (measured by operational synchrony) has been measured in ten novice meditators using an electroencephalogram (EEG) recording in a pre-/post-meditation intervention design. We have found that while the whole DMN was clearly suppressed, different subnets of DMN responded differently after 4 months of meditation training: The strength of EEG operational synchrony in the right and left posterior modules of the DMN decreased in resting post-meditation condition compared to a pre-meditation condition, whereas the frontal DMN module on the contrary exhibited an increase in the strength of EEG operational synchrony. These findings combined with published data on functional–anatomic heterogeneity within the DMN and on trait subjective experiences commonly found following meditation allow us to propose that the first-person perspective and the sense of agency (the witnessing observer) are presented by the frontal DMN module, while the posterior modules of the DMN are generally responsible for the experience of the continuity of ‘I’ as embodied and localized within bodily space. Significance of these findings is discussed.


Meditation Yoga Electroencephalogram (EEG) Mind–body practice Self Self-referential processing Self-consciousness Functional connectivity Operational synchrony Operational modules DMN 



Quantitative electroencephalogram


Default mode network


Operational module


Operational synchrony


Rapid transitional period





The authors did not receive funding for this study. The authors would like to thank Dmitry Skarin for language editing and all participants of the meditation training course. Special thanks go to Tapio Saarinen with whom the authors discussed DMN-related aspects, which then motivated the authors to conduct this study.


  1. Andrews-Hanna JR (2012) The brain’s default network and its adaptive role in internal mentation. Neuroscientist 18:251–270PubMedCentralPubMedCrossRefGoogle Scholar
  2. Andrews-Hanna JR, Reidler JS, Sepulcre J, Poulin R, Buckner RL (2010) Functional-anatomic fractionation of the brain’s default network. Neuron 65:550–562PubMedCentralPubMedCrossRefGoogle Scholar
  3. Andrews-Hanna JR, Smallwood J, Spreng RN (2014) The default network and self-generated thought: component processes, dynamic control, and clinical relevance. Ann NY Acad Sci 1316:29–52PubMedCentralPubMedCrossRefGoogle Scholar
  4. Arnow BA, Desmond JE, Banner LL, Glover GH, Solomon A, Polan ML, Lue TF, Atlas SW (2002) Brain activation and sexual arousal in healthy, heterosexual males. Brain 125:1014–1023PubMedCrossRefGoogle Scholar
  5. Aspell JE, Lenggenhager B, Blanke O (2009) Keeping in touch with one’s self: multisensory mechanisms of self-consciousness. PLoS ONE 4:e6488. doi: 10.1371/journal.pone.0006488 PubMedCentralPubMedCrossRefGoogle Scholar
  6. Baars BJ, Ramsøy TZ, Laureys S (2003) Brain, conscious experience and the observing self. Trends Neurosci 26:671–675PubMedCrossRefGoogle Scholar
  7. Barbas H (2000) Connections underlying the synthesis of cognition, memory, and emotion in primate prefrontal cortices. Brain Res Bull 52:319–330PubMedCrossRefGoogle Scholar
  8. Basar E, Guntekin B (2009) Darwin’s evolution theory, brain oscillations, and complex brain function in a new “Cartesian view”. Int J Psychophysiol 71:2–8PubMedCrossRefGoogle Scholar
  9. Berkovich-Ohana A, Glicksohn J, Goldstein A (2012) Mindfulness-induced changes in gamma band activity—implications for the default mode network, self-reference and attention. Clin Neurophysiol 123:700–710PubMedCrossRefGoogle Scholar
  10. Berkovich-Ohana A, Glicksohn J, Goldstein A (2014) Studying the default mode and its mindfulness-induced changes using EEG functional connectivity. Soc Cogn Affect Neurosci 9:1616–1624PubMedCentralPubMedCrossRefGoogle Scholar
  11. Berlucchi G, Aglioti S (1997) The body in the brain: neural bases of corporeal awareness. Trends Neurosci 20:560–564PubMedCrossRefGoogle Scholar
  12. Binder JR, Desai RH (2011) The neurobiology of semantic memory. Trends Cogn Sci 15:527–536PubMedCentralPubMedCrossRefGoogle Scholar
  13. Blanke O, Metzinger T (2009) Full-body illusions and minimal phenomenal selfhood. Trends Cogn Sci 13:7–13PubMedCrossRefGoogle Scholar
  14. Blanke O, Ortigue S, Landis T, Seeck M (2002) Stimulating illusory own-body perceptions. Nature 419:269–270PubMedCrossRefGoogle Scholar
  15. Blood AJ, Zatorre RJ (2001) Intensely pleasurable responses to music correlate with activity in brain regions implicated in reward and emotion. Proc Natl Acad Sci USA 98:11818–11823PubMedCentralPubMedCrossRefGoogle Scholar
  16. Boly M, Tshibanda L, Vanhaudenhuyse A, Noirhomme Q, Schnakers C, Ledoux D, Boveroux P, Garweg C, Lambermont B, Phillips C, Luxen A, Moonen G, Bassetti C, Maquet P, Laureys S (2009) Functional connectivity in the default network during resting state is preserved in a vegetative but not in a brain dead patient. Hum Brain Mapp 30:2393–2400PubMedCrossRefGoogle Scholar
  17. Brewer JA, Worhunsky PD, Gray JR, Tang YY, Weber J, Kober H (2011) Meditation experience is associated with differences in default mode network activity and connectivity. Proc Natl Acad Sci USA 108:20254–20259PubMedCentralPubMedCrossRefGoogle Scholar
  18. Buckner RL, Carroll DC (2007) Self-projection and the brain. Trends Cogn Sci 11:49–57PubMedCrossRefGoogle Scholar
  19. Cahn BR, Polich J (2006) Meditation states and traits: EEG, ERP, and neuroimaging studies. Psychol Bull 132:180–211PubMedCrossRefGoogle Scholar
  20. Chen AC, Oathes DJ, Chang C, Bradley T, Zhou ZW, Williams LM, Glover GH, Deisseroth K, Etkin A (2013) Causal interactions between fronto-parietal central executive and default-mode networks in humans. Proc Natl Acad Sci USA 110:19944–19949PubMedCentralPubMedCrossRefGoogle Scholar
  21. Christoff K, Ream JM, Geddes LPT, Gabrieli JDE (2003) Evaluating self-generated information: anterior prefrontal contributions to human cognition. Behav Neurosci 117:1161–1168PubMedCrossRefGoogle Scholar
  22. Craik FIM, Moroz TM, Moscovich M, Stuss DT, Winocur G, Tulving E, Kapur S (1999) In search of the self: a positron emission tomography study. Psychol Sci 10:26–34CrossRefGoogle Scholar
  23. Critchley HD, Wiens S, Rotshtein P, Ohman A, Dolan RJ (2004) Neural systems supporting interoceptive awareness. Nat Neurosci 7:189–195PubMedCrossRefGoogle Scholar
  24. Damasio AR (1999) The feeling of what happens: body and emotion in the making of consciousness. Harcourt Trade Publishers, USAGoogle Scholar
  25. Davidson R (2010) Empirical explorations of mindfulness: conceptual and methodological conundrums. Emotion 10:8–11PubMedCentralPubMedCrossRefGoogle Scholar
  26. de Vignemont F, Fourneret P (2004) The sense of agency: a philosophical and empirical review of the ‘‘Who’’ system. Conscious Cogn 13:1–19PubMedCrossRefGoogle Scholar
  27. Dor-Ziderman Y, Berkovich-Ohana A, Glicksohn J, Goldstein A (2013) Mindfulness-induced selflessness: a MEG neurophenomenological study. Front Hum Neurosci 7:582. doi: 10.3389/fnhum.2013.00582 PubMedCentralPubMedCrossRefGoogle Scholar
  28. Doucet G, Naveau M, Petit L, Delcroix N, Zago L, Crivello F, Jobard G, Tzourio-Mazoyer N, Mazoyer B, Mellet E, Joliot M (2011) Brain activity at rest: a multiscale hierarchical functional organization. J Neurophysiol 105:2753–2763PubMedCrossRefGoogle Scholar
  29. Eslinger PJ (1998) Neurological and neuropsychological bases of empathy. Eur Neurol 39:193–199PubMedCrossRefGoogle Scholar
  30. Faber PL, Lehmann D, Gianotti LRR, Kaelin M, Pascual-Marqui RD (2004) Scalp and intracerebral (LORETA) theta and gamma EEG coherence in meditation, In: Meeting of the international society for neuronal regulation. Winterthur, SwitzerlandGoogle Scholar
  31. Fair DA, Cohen AL, Dosenbach NU, Church JA, Miezin FM, Barch DM, Raichle ME, Petersen SE, Schlaggar BL (2008) The maturing architecture of the brain’s default network. Proc Natl Acad Sci USA 105:4028–4032PubMedCentralPubMedCrossRefGoogle Scholar
  32. Faulkner EA (1969) Introduction to the theory of linear systems. Chapman and Hall, LondonGoogle Scholar
  33. Fell J (2012) I think, therefore I am (unhappy). Front Hum Neurosci 6:132. doi: 10.3389/fnhum.2012.00132 PubMedCentralPubMedCrossRefGoogle Scholar
  34. Fingelkurts AA, Fingelkurts AA, Bagnato S, Boccagni C, Galardi G. The chief role of frontal operational module of the brain default mode network in the potential recovery of consciousness from the vegetative state: a preliminary comparison of three case reports. Open Neuroimaging J (in press)Google Scholar
  35. Fingelkurts AA, Fingelkurts AA (2008) Brain–mind operational architectonics imaging: technical and methodological aspects. Open Neuroimaging J 2:73–93CrossRefGoogle Scholar
  36. Fingelkurts AA, Fingelkurts AA (2010) Short-term EEG spectral pattern as a single event in EEG phenomenology. Open Neuroimaging J 4:130–156Google Scholar
  37. Fingelkurts AA, Fingelkurts AA (2011) Persistent operational synchrony within brain default-mode network and self-processing operations in healthy subjects. Brain Cogn 75:79–90PubMedCrossRefGoogle Scholar
  38. Fingelkurts AA, Fingelkurts AA (2014) EEG oscillatory states: universality, uniqueness and specificity across healthy-normal, altered and pathological brain conditions. PLoS ONE 9(2):e87507. doi: 10.1371/journal.pone.0087507 PubMedCentralPubMedCrossRefGoogle Scholar
  39. Fingelkurts AA, Fingelkurts AA (2015) Operational architectonics methodology for EEG analysis: theory and results. In: Sakkalis V (ed) Modern electroencephalographic assessment techniques: theory and applications. Neuromethods 91, Springer, pp 1–59Google Scholar
  40. Fingelkurts AA, Fingelkurts AA, Neves CFH (2010) Natural world physical, brain operational, and mind phenomenal space-time. Phys Life Rev 7:195–249PubMedCrossRefGoogle Scholar
  41. Fingelkurts AA, Fingelkurts AA, Bagnato S, Boccagni C, Galardi G (2012) DMN operational synchrony relates to self-consciousness: evidence from patients in vegetative and minimally conscious states. Open Neuroimag J 6:55–68PubMedCentralPubMedCrossRefGoogle Scholar
  42. Fingelkurts AA, Fingelkurts AA, Kallio-Tamminen T (2015) EEG-guided meditation: a personalized approach. J Physiol Paris. doi: 10.1016/j.jphysparis.2015.03.001 PubMedGoogle Scholar
  43. Fischer R (1971) A cartography of the ecstatic and meditative states. Science 174:897–904PubMedCrossRefGoogle Scholar
  44. Fletcher PC, Frith CD, Baker SC, Shallice T, Frackowiak RS, Dolan RJ (1995) The mindʼs eye—precuneus activation in memory-related imagery. Neuroimage 2:195–200PubMedCrossRefGoogle Scholar
  45. Fransson P, Skiöld B, Horsch S, Nordell A, Blennow M, Lagercrantz H, Aden U (2007) Resting-state networks in the infant brain. Proc Natl Acad Sci USA 104:15531–15536PubMedCentralPubMedCrossRefGoogle Scholar
  46. Fransson P, Skiöld B, Engström M, Hallberg B, Mosskin M, Aden U, Lagercrantz H, Blennow M (2009) Spontaneous brain activity in the newborn brain during natural sleep—an fMRI study in infants born at full term. Pediatr Res 66:301–305PubMedCrossRefGoogle Scholar
  47. Fuster JM (1993) Frontal lobes. Curr Opin Neurobiol 3:160–165PubMedCrossRefGoogle Scholar
  48. Gallagher S (2000) Philosophical conceptions of the self: implications for cognitive science. Trends Cogn Sci 4:14–21PubMedCrossRefGoogle Scholar
  49. Gao W, Zhu H, Giovanello KS, Smith JK, Shen D, Gilmore JH, Lin W (2009) Evidence on the emergence of the brain’s default network from 2-week-old to 2-year-old healthy pediatric subjects. Proc Natl Acad Sci USA 106:6790–6795PubMedCentralPubMedCrossRefGoogle Scholar
  50. Goleman DJ (1996) The meditative mind: varieties of meditative experience. Penguin Putnam, New YorkGoogle Scholar
  51. Greicius MD, Kiviniemi V, Tervonen O, Vainionpaa V, Alahuhta S, Reiss AL, Menon V (2008) Persistent default-mode network connectivity during light sedation. Hum Brain Mapp 29:839–847PubMedCentralPubMedCrossRefGoogle Scholar
  52. Gusnard DA (2005) Being a self: considerations from functional imaging. Conscious Cogn 14:679–697PubMedCrossRefGoogle Scholar
  53. Gusnard DA, Akbudak E, Shulman GL, Raichle ME (2001) Medial prefrontal cortex and self-referential mental activity: relation to a default mode of brain function. Proc Natl Acad Sci USA 98:4259–4264PubMedCentralPubMedCrossRefGoogle Scholar
  54. Hagerty MR, Isaacs J, Brasington L, Shupe L, Fetz EE, Cramer SC (2013) Case study of ecstatic meditation: fMRI and EEG evidence of self-stimulating a reward system. Neural Plast 2013:653572. doi: 10.1155/2013/653572 PubMedCentralPubMedGoogle Scholar
  55. Haggard P, Taylor-Clarke M, Kennett S (2003) Tactile perception, cortical representation and the bodily self. Curr Biol 13:R170–R173PubMedCrossRefGoogle Scholar
  56. Hinterberger T, Kamei T, Walach H (2011) Psychophysiological classification and staging of mental states during meditative practice. Biomed Tech (Berl) 56:341–350CrossRefGoogle Scholar
  57. Hohwy J (2007) The sense of self in the phenomenology of agency and perception. Psyche (Stuttg) 13:1–20Google Scholar
  58. Ionta S, Gassert R, Blanke O (2011) Multi-sensory and sensorimotor foundation of bodily self-consciousness—an interdisciplinary approach. Front Psychol 2:383. doi: 10.3389/fpsyg.2011.00383 PubMedCentralPubMedCrossRefGoogle Scholar
  59. Jann K, Dierks T, Boesch C, Kottlowa M, Strik W, Koenig T (2009) BOLD correlates of EEG alpha phase-locking and the fMRI default mode network. Neuroimage 45:903–916PubMedCrossRefGoogle Scholar
  60. Jeannerod M (2007) Being oneself. J Physiol Paris 101:161–168PubMedCrossRefGoogle Scholar
  61. Johnson SC, Baxter LC, Wilder LS, Pipe JG, Heiserman JE, Prigatano GP (2002) Neural correlates of self-reflection. Brain 125:1808–1814PubMedCrossRefGoogle Scholar
  62. Kaiser DA (2000) QEEG. State of the art, or state of confusion. J Neurother 1530-017X, 57–75Google Scholar
  63. Killingsworth MA, Gilbert DT (2010) A wandering mind is an unhappy mind. Science 330:932PubMedCrossRefGoogle Scholar
  64. Kircher TTJ, Senior C, Phillips ML, Benson PJ, Bullmore ET, Brammer M, Simmons A, Williams SC, Bartels M, David AS (2000) Towards a functional neuroanatomy of self processing: effects of faces and words. Brain Res Cogn Brain Res 10:133–144PubMedCrossRefGoogle Scholar
  65. Klimesch W, Sauseng P, Hanslmayr S (2007) EEG alpha oscillations: the inhibition–timing hypothesis. Brain Res Rev 53:63–88PubMedCrossRefGoogle Scholar
  66. Knyazev GG, Slobodskoj-Plusnin JY, Bocharov AV, Pylkova LV (2011) The default mode network and EEG alpha oscillations: an independent component analysis. Brain Res 1402:67–79PubMedCrossRefGoogle Scholar
  67. Koenig T, Prichep L, Lehmann D, Sosa PV, Braeker E, Kleinlogel H, Isenhart R, John ER (2002) Millisecond by millisecond, year by year: normative EEG microstates and developmental stages. Neuroimage 16:41–48PubMedCrossRefGoogle Scholar
  68. Koessler L, Maillard L, Benhadid A, Vignal JP, Felblinger J, Vespignani H, Braun M (2009) Automated cortical projection of EEG sensors: anatomical correlation via the international 10–10 system. Neuroimage 46:64–72PubMedCrossRefGoogle Scholar
  69. Laufs H, Kleinschmidt A, Beyerle A, Eger E, Salek-Haddadi A, Preibisch C, Krakow K (2003) EEG-correlated fMRI of human alpha activity. Neuroimage 19:1463–1476PubMedCrossRefGoogle Scholar
  70. Laureys S (2005) The neural correlate of (un)awareness: lessons from the vegetative state. Trends Cogn Sci 9:556–559PubMedCrossRefGoogle Scholar
  71. Leech R, Kamourieh S, Beckmann CF, Sharp DJ (2011) Fractionating the default mode network: distinct contributions of the ventral and dorsal posterior cingulate cortex to cognitive control. J Neurosci 31:3217–3224PubMedCrossRefGoogle Scholar
  72. Lehmann D, Faber PL, Tei S, Pascual-Marqui RD, Milz P, Kochi K (2012) Reduced functional connectivity between cortical sources in five meditation traditions detected with lagged coherence using EEG tomography. Neuroimage 60:1574–1586PubMedCrossRefGoogle Scholar
  73. Li W, Mai X, Liu C (2014) The default mode network and social understanding of others: what do brain connectivity studies tell us. Front Hum Neurosci 8:74. doi: 10.3389/fnhum.2014.00074 PubMedCentralPubMedGoogle Scholar
  74. Lou HC, Luber B, Stanford A, Lisanby SH (2010) Self-specific processing in the default network: a single-pulse TMS study. Exp Brain Res 207:27–38PubMedCentralPubMedCrossRefGoogle Scholar
  75. Ludwig DS, Kabat-Zinn J (2008) Mindfulness in medicine. JAMA 300:1350–1352PubMedCrossRefGoogle Scholar
  76. Lutz A, Thompson E (2003) Neurophenomenology. J Conscious Stud 10:31–52Google Scholar
  77. Lutz A, Brefczynski-Lewis J, Johnstone T, Davidson RJ (2008) Regulation of the neural circuitry of emotion by compassion meditation: effects of meditative expertise. PLoS ONE 3:e1897. doi: 10.1371/journal.pone.0001897 PubMedCentralPubMedCrossRefGoogle Scholar
  78. Mantini D, Perrucci MG, Del Gratta C, Romani GL, Corbetta M (2007) Electrophysiological signatures of resting state networks in the human brain. Proc Natl Acad Sci USA 104:13170–13175PubMedCentralPubMedCrossRefGoogle Scholar
  79. Mascaro JS, Rilling JK, Tenzin Negi L, Raison CL (2013) Compassion meditation enhances empathic accuracy and related neural activity. Soc Cogn Affect Neurosci 8:48–55PubMedCentralPubMedCrossRefGoogle Scholar
  80. Metzinger T (2004) Being no one: the self-model theory of subjectivity. MIT Press, CambridgeGoogle Scholar
  81. Moran JM, Kelley WM, Heatherton TF (2013) What can the organization of the brain’s default mode network tell us about self-knowledge? Front Hum Neurosci 7:391PubMedCentralPubMedGoogle Scholar
  82. Múnera CP, Lomlomdjian C, Gori B, Terpiluk V, Medel N, Solís P, Kochen S (2014) Episodic and semantic autobiographical memory in temporal lobe epilepsy. Epilepsy Res Treat 2014:157452. doi: 10.1155/2014/157452 PubMedCentralPubMedGoogle Scholar
  83. Musholt K (2013) A philosophical perspective on the relation between cortical midline structures and the self. Front Hum Neurosci 7:536. doi: 10.3389/fnhum.2013.00536 PubMedCentralPubMedCrossRefGoogle Scholar
  84. Nash JD, Newberg A (2013) Toward a unifying taxonomy and definition for meditation. Front Psychol 4:806. doi: 10.3389/fpsyg.2013.00806 PubMedCentralPubMedCrossRefGoogle Scholar
  85. Neuner I, Arrubla J, Werner CJ, Hitz K, Boers F, Kawohl W, Shah NJ (2014) The default mode network and EEG regional spectral power: a simultaneous fMRI-EEG study. PLoS ONE 9(2):e88214. doi: 10.1371/journal.pone.0088214 PubMedCentralPubMedCrossRefGoogle Scholar
  86. Newberg A, Iversen J (2003) The neural basis of the complex mental task of meditation: neurotransmitter and neurochemical considerations. Med Hypothesis 61:282–291CrossRefGoogle Scholar
  87. Newberg A, Alavi A, Baime M, Pourdehnad M, Santanna J, d’Aquili EG (2001) The measurement of regional cerebral blood flow during the complex cognitive task of meditation: a preliminary SPECT study. Psychiatry Res 106:113–122PubMedCrossRefGoogle Scholar
  88. Newen A, Vogeley K (2003) Self-representation: searching for a neural signature of self-consciousness. Conscious Cogn 12:529–543PubMedCrossRefGoogle Scholar
  89. Nitschke JB, Nelson EE, Rusch BD, Fox AS, Oakes TR, Davidson RJ (2004) Orbitofrontal cortex tracks positive mood in mothers viewing pictures of their newborn infants. Neuroimage 21:583–592PubMedCrossRefGoogle Scholar
  90. Noack RA (2012) Solving the “human problem”: the frontal feedback model. Conscious Cogn 21:1043–1067PubMedCrossRefGoogle Scholar
  91. Northoff G, Heinzel A, de Greck M, Bermpohl F, Dobrowolny H, Panksepp J (2006) Self-referential processing in our brain. A meta-analysis of imaging studies on the self. Neuroimage 31:440–457PubMedCrossRefGoogle Scholar
  92. Ott U, Walter B, Gebhardt H, Stark R, Vaitl D (2010) Inhibition of default mode network activity during mindfulness meditation, In: Abstracts of the 16th Annual Meeting of the Organization for Human Brain Mapping (June 6–10) 2010, Barcelona, Spain, p 8Google Scholar
  93. Pagnoni G, Cekic M, Guo Y (2008) “Thinking about Not-Thinking”: neural correlates of conceptual processing during Zen meditation. PLoS ONE 3(9):e3083. doi: 10.1371/journal.pone.0003083 PubMedCentralPubMedCrossRefGoogle Scholar
  94. Palva S, Palva JM (2007) New vistas for alpha-frequency band oscillations. Trends Neurosci 30:150–158PubMedCrossRefGoogle Scholar
  95. Patterson K, Nestor PJ, Rogers TT (2007) Where do you know what you know? The representation of semantic knowledge in the human brain. Nat Rev Neurosci 8:976–987PubMedCrossRefGoogle Scholar
  96. Phan KL, Wager TD, Taylor SF, Liberzon I (2004) Functional neuroimaging studies of human emotions. CNS Spectr 9:258–266PubMedGoogle Scholar
  97. Qin P, Northoff G (2011) How is our self related to midline regions and the default-mode network? Neuroimage 57:1221–1233PubMedCrossRefGoogle Scholar
  98. Raffone A, Srinivasan N, Barendregt HP (2014) Attention, consciousness and mindfulness in meditation. In: Singh NN (ed) Psychology of meditation. Nova Science Publishers, New York, pp 147–166Google Scholar
  99. Raichle ME (2006) Neuroscience. The brain’s dark energy. Science 314:1249–1250PubMedCrossRefGoogle Scholar
  100. Revonsuo A (2006) Inner presence: consciousness as a biological phenomenon. MIT Press, CambridgeGoogle Scholar
  101. Ricard M, Lutz A, Davidson RJ (2014) Mind of the meditator. Sci Am 311:38–45CrossRefGoogle Scholar
  102. Salomon R, Levy DR, Malach R (2014) Deconstructing the default: cortical subdivision of the default mode/intrinsic system during self-related processing. Hum Brain Mapp 35:1491–1502PubMedCrossRefGoogle Scholar
  103. Schilbach L, Eickhoff SB, Rotarska-Jagiela A, Fink GR, Vogeley K (2008) Minds at rest? Social cognition as the default mode of cognizing and its putative relationship to the “default system” of the brain. Conscious Cogn 17:457–467PubMedCrossRefGoogle Scholar
  104. Shaw JC (2003) The Brain’s alpha rhythms and the mind. Elsevier Science BV, AmsterdamGoogle Scholar
  105. Shonin E, Gordon WV, Griffiths MD (2014) Cognitive behavioral therapy (CBT) and meditation awareness training (MAT) for the treatment of co-occurring schizophrenia and pathological gambling: a case study. Int J Ment Health Addict 12:181–196CrossRefGoogle Scholar
  106. Shulman GL, Fiez JA, Corbetta M, Buckner RL, Miezin FM, Raichle ME, Petersen SE (1997) Common blood flow changes across visual tasks: II. Decreases in cerebral cortex. J Cogn Neurosci 9:648–663PubMedCrossRefGoogle Scholar
  107. Sims ACP (2003) Symptoms in the mind: an introduction to descriptive psychopathology. Elsevier Health Sciences, AmsterdamGoogle Scholar
  108. Smallwood J, Fitzgerald A, Miles LK, Phillips LH (2009) Shifting moods, wandering minds: negative moods lead the mind to wander. Emotion 9:271–276PubMedCrossRefGoogle Scholar
  109. Spreng RN, Grady CL (2010) Patterns of brain activity supporting autobiographical memory, prospection, and theory-of-mind and their relationship to the default mode network. J Cogn Neurosci 22:1112–1123PubMedCrossRefGoogle Scholar
  110. Taylor VA, Daneault V, Grant J, Scavone G, Breton E, Roffe-Vidal S, Courtemanche J, Lavarenne AS, Marrelec G, Benali H, Beauregard M (2013) Impact of meditation training on the default mode network during a restful state. Cogn Affect Neurosci 8:4–14CrossRefGoogle Scholar
  111. Thomason ME, Chang CE, Glover GH, Gabrieli JD, Greicius MD, Gotlib IH (2008) Default-mode function and task-induced deactivation have overlapping brain substrates in children. Neuroimage 41:1493–1503PubMedCentralPubMedCrossRefGoogle Scholar
  112. Travis F, Shear J (2010) Focused attention, open monitoring and automatic self-transcending: categories to organize meditations from Vedic, Buddhist and Chinese traditions. Conscious Cogn 19:1110–1118PubMedCrossRefGoogle Scholar
  113. Trehub A (2007) Space, self, and the theater of consciousness. Conscious Cogn 16:310–330PubMedCrossRefGoogle Scholar
  114. Uddin LQ, Kelly AMC, Biswal BB, Castellanos X, Milham MP (2009) Functional connectivity of default mode network components: correlation, anticorrelation, and causality. Hum Brain Mapp 30:625–637PubMedCrossRefGoogle Scholar
  115. Uhtomskiy AA (1966) Dominanta. Nauka, Moscow-LeningradGoogle Scholar
  116. Vanhaudenhuyse A, Noirhomme Q, Tshibanda LJ, Bruno MA, Boveroux P, Schnakers C, Soddu A, Perlbarg V, Ledoux D, Brichant JF, Moonen G, Maquet P, Greicius MD, Laureys S, Boly M (2010) Default network connectivity reflects the level of consciousness in non-communicative brain-damaged patients. Brain 133:161–171PubMedCentralPubMedCrossRefGoogle Scholar
  117. Von Stein A, Sarnthein J (2000) Different frequencies for different scales of cortical integration: from local gamma to long-range alpha/theta synchronization. Int J Psychophysiol 38:301–313CrossRefGoogle Scholar
  118. Walker JE, Kozlowski GP, Lawson R (2007) A modular activation/coherence approach to evaluating clinical/QEEG correlations and for guiding neurofeedback training: modular insufficiencies, modular excesses, disconnections, and hyperconnections. J Neurother 11:25–44CrossRefGoogle Scholar
  119. Weiss S, Rappelsberger P (2000) Long-range EEG synchronization during word encoding correlates with successful memory performance. Brain Res Cogn Brain Res 9:299–312PubMedCrossRefGoogle Scholar
  120. Wicker B, Ruby P, Royet JP, Fonlupt P (2003) A relation between rest and the self in the brain? Brain Res Rev 43:224–230PubMedCrossRefGoogle Scholar
  121. Yeo BT, Krienen FM, Sepulcre J, Sabuncu MR, Lashkari D, Hollinshead M, Roffman JL, Smoller JW, Zöllei L, Polimeni JR, Fischl B, Liu H, Buckner RL (2011) The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J Neurophysiol 106:1125–1165PubMedCrossRefGoogle Scholar
  122. Zahavi D (2005) Subjectivity and selfhood. Investigating the first-person perspective. MIT Press, CambridgeGoogle Scholar

Copyright information

© Marta Olivetti Belardinelli and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Andrew A. Fingelkurts
    • 1
    Email author
  • Alexander A. Fingelkurts
    • 1
  • Tarja Kallio-Tamminen
    • 2
  1. 1.BM-Science – Brain and Mind Technologies Research CentreEspooFinland
  2. 2.Physics Foundations Society and Society for Natural PhilosophyHelsinkiFinland

Personalised recommendations