Cognitive Processing

, Volume 17, Issue 1, pp 67–77 | Cite as

Anatomically ordered tapping interferes more with one-digit addition than two-digit addition: a dual-task fMRI study

  • Firat Soylu
  • Sharlene D. Newman
Research Report


Fingers are used as canonical representations for numbers across cultures. In previous imaging studies, it was shown that arithmetic processing activates neural resources that are known to participate in finger movements. Additionally, in one dual-task study, it was shown that anatomically ordered finger tapping disrupts addition and subtraction more than multiplication, possibly due to a long-lasting effect of early finger counting experiences on the neural correlates and organization of addition and subtraction processes. How arithmetic task difficulty and tapping complexity affect the concurrent performance is still unclear. If early finger counting experiences have bearing on the neural correlates of arithmetic in adults, then one would expect anatomically and non-anatomically ordered tapping to have different interference effects, given that finger counting is usually anatomically ordered. To unravel these issues, we studied how (1) arithmetic task difficulty and (2) the complexity of the finger tapping sequence (anatomical vs. non-anatomical ordering) affect concurrent performance and use of key neural circuits using a mixed block/event-related dual-task fMRI design with adult participants. The results suggest that complexity of the tapping sequence modulates interference on addition, and that one-digit addition (fact retrieval), compared to two-digit addition (calculation), is more affected from anatomically ordered tapping. The region-of-interest analysis showed higher left angular gyrus BOLD response for one-digit compared to two-digit addition, and in no-tapping conditions than dual tapping conditions. The results support a specific association between addition fact retrieval and anatomically ordered finger movements in adults, possibly due to finger counting strategies that deploy anatomically ordered finger movements early in the development.


Arithmetic Finger tapping fMRI Angular gyrus Embodied cognition Numerical cognition 


  1. Anderson ML (2007) Evolution of cognitive function via redeployment of brain areas. Neuroscientist 13(1):13–21CrossRefPubMedGoogle Scholar
  2. Andres M, Michaux N, Pesenti M (2012) Common substrate for mental arithmetic and finger representation in the parietal cortex. Neuroimage 62(3):1520–1528CrossRefPubMedGoogle Scholar
  3. Ardila A, Concha M (2000) Angular gyrus syndrome revisited: acalculia, finger agnosia, right-left disorientation and semantic aphasia. Aphasiology 14(7):37–41CrossRefGoogle Scholar
  4. Arsalidou M, Taylor MJ (2011) Does 2 + 2 = 4? Meta-analyses of brain areas needed for numbers and calculations. Neuroimage 54(3):2382–2393CrossRefPubMedGoogle Scholar
  5. Badets A, Pesenti M, Olivier E (2010) Response-effect compatibility of finger-numeral configurations in arithmetical context. Q J Exp Psychol 63(1):16–22. doi: 10.1080/17470210903134385 CrossRefGoogle Scholar
  6. Brett M, Anton J, Valabregue R, Poline J (2002) Region of interest analysis using the MarsBar toolbox for SPM 99. In: 8th international conference on functional mapping of the human brain, Sendai, JapanGoogle Scholar
  7. Butterworth B (1999) What counts: how every brain is hardwired for math. The Free Press, New YorkGoogle Scholar
  8. Dehaene S, Cohen L (1997) Cerebral pathways for calculation: double dissociation between rote verbal and quantitative knowledge of arithmetic. Cortex 33:219–250CrossRefPubMedGoogle Scholar
  9. Dehaene S, Spelke E, Pinel P, Stanescu R, Tsivkin S (1999) Sources of mathematical thinking: behavioral and brain-imaging evidence. Science 284(5416):970CrossRefPubMedGoogle Scholar
  10. Dehaene S, Piazza M, Pinel P, Cohen L (2003) Three parietal circuits for number processing. Cogn Neuropsychol 20(3–6):487–506CrossRefPubMedGoogle Scholar
  11. Di Luca S, Pesenti M (2008) Masked priming effect with canonical finger numeral configurations. Exp Brain Res 185(1):27–39CrossRefPubMedGoogle Scholar
  12. Domahs F, Moeller K, Huber S, Willmes K, Nuerk H-CC (2010) Embodied numerosity: implicit hand-based representations influence symbolic number processing across cultures. Cognition 116(2):251–266. doi: 10.1016/j.cognition.2010.05.007 CrossRefPubMedGoogle Scholar
  13. Evans AC, Collins DL, Mills SR, Brown ED, Kelly RL, Peters TM (1993) 3D statistical neuroanatomical models from 305 MRI volumes. In: Nuclear science symposium and medical imaging conference proceedings. IEEE, pp 1813–1817. doi: 10.1109/NSSMIC.1993.373602
  14. Fayol M, Barrouillet P, Marinthe C (1998) Predicting arithmetical achievement from neuro-psychological performance: a longitudinal study. Cognition 68(2):B63–B70CrossRefPubMedGoogle Scholar
  15. Fischer MH (2008) Finger counting habits modulate spatial-numerical associations. Cortex 44(4):386–392CrossRefPubMedGoogle Scholar
  16. Friston KJ, Penny W (2003) Posterior probability maps and SPMs. Neuroimage 19(3):1240–1249CrossRefPubMedGoogle Scholar
  17. Gerloff C, Corwell B, Chen R, Hallett M, Cohen LG (1998) The role of the human motor cortex in the control of complex and simple finger movement sequences. Brain 121(9):1695CrossRefPubMedGoogle Scholar
  18. Gerstmann J (1940) Syndrome of finger agnosia, disorientation for right and left, agraphia and acalculia. Arch Neurol Psychiatry 44:398–408CrossRefGoogle Scholar
  19. Goldberg TE, Berman KF, Fleming K, Ostrem J, Van Horn JD, Esposito G et al (1998) Uncoupling cognitive workload and prefrontal cortical physiology: a PET rCBF study. Neuroimage 7(4):296–303CrossRefPubMedGoogle Scholar
  20. Grabner RH, Ansari D, Koschutnig K, Reishofer G, Ebner F, Neuper C (2009) To retrieve or to calculate? Left angular gyrus mediates the retrieval of arithmetic facts during problem solving. Neuropsychologia 47(2):604–608CrossRefPubMedGoogle Scholar
  21. Henson R, Penny W (2005) ANOVAs and SPM. Technical report, 1. Wellcome Department of Imaging Neuroscience, London, pp 1–24Google Scholar
  22. Humphries C, Binder JR, Medler D, Liebenthal A (2007) Time course of semantic processes during sentence comprehension: an fMRI study. Neuroimage 36(3):924–932. doi: 10.1016/j.neuroimage.2007.03.059 PubMedCentralCrossRefPubMedGoogle Scholar
  23. Just MA, Carpenter PA, Keller TA, Emery L, Zajac H, Thulborn KR (2001) Interdependence of nonoverlapping cortical systems in dual cognitive tasks. Neuroimage 14(2):417–426CrossRefPubMedGoogle Scholar
  24. Klein E, Moeller K, Willmes K, Nuerk H-C, Domahs F (2011) The influence of implicit hand-based representations on mental arithmetic. Front Psychol 2(9):197. doi: 10.3389/fpsyg.2011.00197 PubMedCentralPubMedGoogle Scholar
  25. Klingberg T, Roland PE (1997) Interference between two concurrent tasks is associated with activation of overlapping fields in the cortex. Cogn Brain Res 6(1):1–8.
  26. Kriegeskorte N, Simmons WK, Bellgowan PSF, Baker CI (2009) Circular analysis in systems neuroscience: the dangers of double dipping. Nat Neurosci 12(5):535–540PubMedCentralCrossRefPubMedGoogle Scholar
  27. Krinzinger H, Koten JW, Horoufchin H, Kohn N, Arndt D, Sahr K et al (2011) The role of finger representations and saccades for number processing: an FMRI study in children. Front Psychol 2(12):373. doi: 10.3389/fpsyg.2011.00373 PubMedCentralPubMedGoogle Scholar
  28. Liu Y, Shen H, Zhou Z, Hu D (2011) Sustained negative BOLD response in human fMRI finger tapping task. PLoS ONE 6(8):e23839. doi: 10.1371/journal.pone.0023839 PubMedCentralCrossRefPubMedGoogle Scholar
  29. Luo Z, Jose PE, Huntsinger CS, Pigott TD (2007) Fine motor skills and mathematics achievement in East Asian American and European American kindergartners and first graders. Br J Dev Psychol 25(4):595–614CrossRefGoogle Scholar
  30. Masson MEJ, Loftus GR (2003) Using confidence intervals for graphically based data interpretation. Can J Exp Psychol 57(3):203–220. doi: 10.1037/h0087426 CrossRefPubMedGoogle Scholar
  31. Mayer E, Martory MD, Pegna AJ, Landis T, Delavelle J, Annoni JM (1999) A pure case of Gerstmann syndrome with a subangular lesion. Brain 122(6):1107CrossRefPubMedGoogle Scholar
  32. Mazoyer B, Zago L, Mellet E, Bricogne S, Etard O, Houdé O et al (2001) Cortical networks for working memory and executive functions sustain the conscious resting state in man. Brain Res Bull 54(3):287–98.
  33. Michaux N, Masson N, Pesenti M, Andres M (2013) Selective interference of finger movements on basic addition and subtraction problem solving. Exp Psychol 60(3):197–205. doi: 10.1027/1618-3169/a000188 CrossRefPubMedGoogle Scholar
  34. Newman SD, Soylu F (2014) The impact of finger counting habits on arithmetic in adults and children. Psychol Res 78(4):549–556. doi: 10.1007/s00426-013-0505-9 CrossRefPubMedGoogle Scholar
  35. Newman SD, Keller TA, Just MA (2007) Volitional control of attention and brain activation in dual task performance. Hum Brain Mapp 28:109–117CrossRefPubMedGoogle Scholar
  36. Noel MP (2005) Finger gnosia: a predictor of numerical abilities in children? Child Neuropsychology 11(5):413–430CrossRefPubMedGoogle Scholar
  37. Penner-Wilger M, Anderson ML (2013) The relation between finger gnosis and mathematical ability: why redeployment of neural circuits best explains the finding. Front Psychol 4(December):877. doi: 10.3389/fpsyg.2013.00877 PubMedCentralPubMedGoogle Scholar
  38. Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL (2001) A default mode of brain function. Proc Natl Acad Sci 98(2):676–682PubMedCentralCrossRefPubMedGoogle Scholar
  39. Rickard TC, Romero SG, Basso G, Wharton C, Flitman S, Grafman J (2000) The calculating brain: an fMRI study. Neuropsychologia 38(3):325–335CrossRefPubMedGoogle Scholar
  40. Roux FE, Boetto S, Sacko O, Chollet F, Tremoulet M (2003) Writing, calculating, and finger recognition in the region of the angular gyrus: a cortical stimulation study of Gerstmann syndrome. J Neurosurg 99(4):716–727CrossRefPubMedGoogle Scholar
  41. Rusconi E, Walsh V, Butterworth B (2005) Dexterity with numbers: rTMS over left angular gyrus disrupts finger gnosis and number processing. Neuropsychologia 43(11):1609–1624CrossRefPubMedGoogle Scholar
  42. Rusconi E, Pinel P, Dehaene S, Kleinschmidt A (2010) The enigma of Gerstmann’s syndrome revisited: a telling tale of the vicissitudes of neuropsychology. Brain J Neurol 133(Pt 2):320–332. doi: 10.1093/brain/awp281 CrossRefGoogle Scholar
  43. Sato M, Cattaneo L, Rizzolatti G, Gallese V (2007) Numbers within our hands: modulation of corticospinal excitability of hand muscles during numerical judgment. J Cogn Neurosci 19(4):684–693CrossRefPubMedGoogle Scholar
  44. Stanescu-Cosson R, Pinel P, van De Moortele PF, Le Bihan D, Cohen L, Dehaene S (2000) Understanding dissociations in dyscalculia: a brain imaging study of the impact of number size on the cerebral networks for exact and approximate calculation. Brain J Neurol 123(1):2240–2255CrossRefGoogle Scholar
  45. Tschentscher N, Hauk O, Fischer MH, Pulvermuller F (2012) You can count on the motor cortex: finger counting habits modulate motor cortex activation evoked by numbers. Neuroimage 59(4):3139–3148CrossRefPubMedGoogle Scholar
  46. Ward B (2000) Simultaneous inference for fMRI data. AFNI 3dDeconvolve documentation, pp 1–16.
  47. Wu SS, Chang TT, Majid A, Caspers S, Eickhoff SB, Menon V (2009) Functional heterogeneity of inferior parietal cortex during mathematical cognition assessed with cytoarchitectonic probability maps. Cereb Cortex 19(12):2930–2945PubMedCentralCrossRefPubMedGoogle Scholar
  48. Zago L, Pesenti M, Mellet E, Crivello F, Mazoyer B, Tzourio-Mazoyer N (2001) Neural correlates of simple and complex mental calculation. Neuroimage 13(2):314–327CrossRefPubMedGoogle Scholar

Copyright information

© Marta Olivetti Belardinelli and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Educational Psychology ProgramUniversity of AlabamaTuscaloosaUSA
  2. 2.Department of Psychological and Brain SciencesIndiana UniversityBloomingtonUSA

Personalised recommendations