Cognitive Processing

, Volume 16, Issue 4, pp 325–332 | Cite as

Movement dynamics reflect a functional role for weak coupling and role structure in dyadic problem solving

  • Drew H. Abney
  • Alexandra Paxton
  • Rick Dale
  • Christopher T. Kello
Research Report

Abstract

Successful interaction requires complex coordination of body movements. Previous research has suggested a functional role for coordination and especially synchronization (i.e., time-locked movement across individuals) in different types of human interaction contexts. Although such coordination has been shown to be nearly ubiquitous in human interaction, less is known about its function. One proposal is that synchrony supports and facilitates communication (Topics Cogn Sci 1:305–319, 2009). However, questions still remain about what the properties of coordination for optimizing communication might look like. In the present study, dyads worked together to construct towers from uncooked spaghetti and marshmallows. Using cross-recurrence quantification analysis, we found that dyads with loosely coupled gross body movements performed better, supporting recent work suggesting that simple synchrony may not be the key to effective performance (Riley et al. 2011). We also found evidence that leader–follower dynamics—when sensitive to the specific role structure of the interaction—impact task performance. We discuss our results with respect to the functional role of coordination in human interaction.

Keywords

Movement dynamics Synchronization Problem solving Dyadic systems 

References

  1. Abney DH, Paxton A, Dale R, Kello CT (2014) Complexity matching in dyadic conversation. J Exp Psychol Gen 143(6):2304CrossRefPubMedGoogle Scholar
  2. Baayen RH, Davidson DJ, Bates DM (2008) Mixed-effects modeling with crossed random effects for subjects and items. J Mem Lang 59(4):390–412. doi:10.1016/j.jml.2007.12.005 CrossRefGoogle Scholar
  3. Bavelas JB, Black A, Lemery CR, Mullett J (1986) “I show how you feel”: motor mimicry as a communicative act. J Personal Soc Psychol 50(2):322CrossRefGoogle Scholar
  4. Bernieri F, Reznick J, Rosenthal R (1988) Synchrony, pseudosynchrony, and dissynchrony: measuring the entrainment process in mother-infant interactions. J Personal Soc Psychol 54(2):243–253CrossRefGoogle Scholar
  5. Brennan SE, Galati A, Kuhlen AK (2010) Two minds, one dialog: coordinating speaking and understanding. Psychol Learn Motiv 53:301–344. doi:10.1016/S0079-7421(10)53008-1 CrossRefGoogle Scholar
  6. Coco MI, Dale R (2014) Cross-recurrence quantification analysis of categorical and continuous time series: an R package. Front Psychol 5:510. doi:10.3389/fpsyg.2014.00510 PubMedCentralCrossRefPubMedGoogle Scholar
  7. Condon WS, Sander LW (1974) Neonate movement is synchronized with adult speech. Science 183(4120):99–101. doi:10.1126/science.183.4120.99 CrossRefPubMedGoogle Scholar
  8. Dale R, Kirkham NNZ, Richardson DDC (2011) The dynamics of reference and shared visual attention. Front Psychol 2:355. doi:10.3389/fpsyg.2011.00355 PubMedCentralCrossRefPubMedGoogle Scholar
  9. Dale R, Fusaroli R, Duran ND, Richardson DC (2013) The self-organization of human interaction. In: Ross B (ed) Psychology of learning and motivation, vol 59. Elsevier, Academic, pp 43–95Google Scholar
  10. De Jaegher H, Di Paolo E, Gallagher S (2010) Can social interaction constitute social cognition? Trends Cogn Sci 14(10):441–447. doi:10.1016/j.tics.2010.06.009 CrossRefPubMedGoogle Scholar
  11. Di Paolo E, De Jaegher H (2012) The interactive brain hypothesis. Front Human Neurosci 6:163. doi:10.3389/fnhum.2012.00163 CrossRefGoogle Scholar
  12. Fusaroli R, Bahrami B, Olsen K, Roepstorff A, Rees G, Frith C, Tylén K (2012) Coming to terms: quantifying the benefits of linguistic coordination. Psychol Sci 23(8):931–939. doi:10.1177/0956797612436816 CrossRefPubMedGoogle Scholar
  13. Fusaroli R, Konvalinka I, Wallot S (2014a) Translational recurrences. In: Marwan N, Riley M, Giuliani A, Webber CL (eds) Springer proceedings in mathematics & statistics, vol 103. Springer International Publishing, Cham, pp 137–155. doi:10.1007/978-3-319-09531-8 Google Scholar
  14. Fusaroli R, Rączaszek-Leonardi J, Tylén K (2014b) Dialog as interpersonal synergy. New Ideas Psychol 32:147–157. doi:10.1016/j.newideapsych.2013.03.005 CrossRefGoogle Scholar
  15. Hove MJ, Risen JL (2009) It’s all in the timing: interpersonal synchrony increases affiliation. Soc Cogn 27(6):949–960. doi:10.1521/soco.2009.27.6.949 CrossRefGoogle Scholar
  16. Kello CT, Van Orden GC (2009) Soft-assembly of sensorimotor function. Nonlinear Dyn Psychol Life Sci 13(1):57–78Google Scholar
  17. Louwerse MM, Dale R, Bard EG, Jeuniaux P (2012) Behavior matching in multimodal communication is synchronized. Cogn Sci 36(8):1404–1426. doi:10.1111/j.1551-6709.2012.01269.x CrossRefPubMedGoogle Scholar
  18. Marwan N, Carmenromano M, Thiel M, Kurths J (2007) Recurrence plots for the analysis of complex systems. Phys Rep 438(5–6):237–329. doi:10.1016/j.physrep.2006.11.001 CrossRefGoogle Scholar
  19. Paxton A, Dale R (2013) Frame-differencing methods for measuring bodily synchrony in conversation. Behav Res Methods 45(2):329–343. doi:10.3758/s13428-012-0249-2 CrossRefPubMedGoogle Scholar
  20. R Core Team (2012) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. http://www.R-project.org/
  21. Riley MA, Richardson MJ, Shockley K, Ramenzoni VC (2011) Interpersonal synergies. Front psychol 2:38PubMedCentralCrossRefPubMedGoogle Scholar
  22. Richardson DC, Dale R (2005) Looking to understand: the coupling between speakers’ and listeners’ eye movements and its relationship to discourse comprehension. Cogn Sci 29(6):1045–1060. doi:10.1207/s15516709cog0000_29 CrossRefPubMedGoogle Scholar
  23. Schmidt RC, Turvey MT (1994) Phase-entrainment dynamics of visually coupled rhythmic movements. Biol Cybern 70(4):369–376. doi:10.1007/BF00200334 CrossRefPubMedGoogle Scholar
  24. Shockley K, Butwill M, Zbilut JP, Webber CL (2002) Cross recurrence quantification of coupled oscillators. Phys Lett A 305(1–2):59–69. doi:10.1016/S0375-9601(02)01411-1 CrossRefGoogle Scholar
  25. Shockley K, Richardson DC, Dale R (2009) Conversation and coordinative structures. Top Cogn Sci 1(2):305–319. doi:10.1111/j.1756-8765.2009.01021.x CrossRefPubMedGoogle Scholar

Copyright information

© Marta Olivetti Belardinelli and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Drew H. Abney
    • 1
  • Alexandra Paxton
    • 1
  • Rick Dale
    • 1
  • Christopher T. Kello
    • 1
  1. 1.Cognitive and Information SciencesUniversity of CaliforniaMercedUSA

Personalised recommendations