Cognitive Processing

, Volume 15, Issue 2, pp 127–142 | Cite as

Representing part–whole relations in conceptual spaces

  • Sandro Rama Fiorini
  • Peter Gärdenfors
  • Mara Abel
Research Report


In this paper, we propose a cognitive semantic approach to represent part–whole relations. We base our proposal on the theory of conceptual spaces, focusing on prototypical structures in part–whole relations. Prototypical structures are not accounted for in traditional mereological formalisms. In our account, parts and wholes are represented in distinct conceptual spaces; parts are joined to form wholes in a structure space. The structure space allows systematic similarity judgments between wholes, taking into consideration shared parts and their configurations. A point in the structure space denotes a particular part structure; regions in the space represent different general types of part structures. We argue that the structural space can represent prototype effects: structural types are formed around typical arrangements of parts. We also show how structure space captures the variations in part structure of a given concept across different domains. In addition, we discuss how some taxonomies of part–whole relations can be understood within our framework.


Part–whole relation Conceptual spaces Prototype Context Partonomy 



Sandro Fiorini is grateful for the support from CAPES Foundation, process number 1444-11-5, and ANP-Petrobras PRH-217. Mara Abel acknowledges the Brazilian Research Council (CNPq) support. Peter Gärdenfors gratefully acknowledges support from the Swedish Research Council for the Linnaeus environment Thinking in Time: Cognition, Communication and Learning. Also, we would like to thank Joel Carbonera, Ingvar Johansson, Joel Parthemore, Luan Fonseca Garcia, and anonymous reviewers for their comments.


  1. Adams B, Raubal M (2009) Conceptual space markup language (CSML): towards the cognitive semantic web. In: IEEE international conference on semantic computing, 2009. ICSC’09. IEEE, pp 253–260Google Scholar
  2. Aisbett J, Gibbon G (2001) A general formulation of conceptual spaces as a meso level representation. Artif Intell 133:189–232. doi: 10.1016/S0004-3702(01)00144-8 CrossRefGoogle Scholar
  3. Alexander RG, Zelinsky GJ (2012) Effects of part-based similarity on visual search: the Frankenbear experiment. Vis Res 54:20–30. doi: 10.1016/j.visres.2011.12.004 PubMedCentralPubMedCrossRefGoogle Scholar
  4. Alvarez GA (2011) Representing multiple objects as an ensemble enhances visual cognition. Trends Cogn Sci 15:122–131. doi: 10.1016/j.tics.2011.01.003 PubMedCrossRefGoogle Scholar
  5. Augustine E, Smith LB, Jones SS (2011) Parts and relations in young children’s shape-based object recognition. J Cogn Dev 12:556–572. doi: 10.1080/15248372.2011.560586 CrossRefGoogle Scholar
  6. Behrmann M, Peterson MA, Moscovitch M, Suzuki S (2006) Independent representation of parts and the relations between them: evidence from integrative agnosia. J Exp Psychol Hum Percept Perform 32:1169–1184. doi: 10.1037/0096-1523.32.5.1169 PubMedCrossRefGoogle Scholar
  7. Biederman I (1987) Recognition-by-components: a theory of human image understanding. Psychol Rev 94:115–117. doi: 10.1037/0033-295X.94.2.115 PubMedCrossRefGoogle Scholar
  8. Chaffin R, Herrmann DJ, Winston M (1988) An empirical taxonomy of part-whole relations: effects of part-whole relation type on relation identification. Lang Cogn Process 3:17–48. doi: 10.1080/01690968808402080 CrossRefGoogle Scholar
  9. Chella A, Frixione M, Gaglio S (2001) Conceptual spaces for computer vision representations. Artif Intell Rev 16:137–152. doi: 10.1023/A:1011658027344 CrossRefGoogle Scholar
  10. Doumas LAA, Hummel JE (2010) A computational account of the development of the generalization of shape information. Cogn Sci 34:698–712. doi: 10.1111/j.1551-6709.2010.01103.x PubMedCrossRefGoogle Scholar
  11. Edelman S (1998) Representation is representation of similarities. Behav Brain Sci 21:449–467PubMedGoogle Scholar
  12. Farah MJ (1992) Is an object an object an object? Cognitive and neuropsychological investigations of domain specificity in visual object recognition. Curr Dir Psychol Sci 1:164–169CrossRefGoogle Scholar
  13. Fiorini SR, Abel M, Scherer CMS (2013) An approach for grounding ontologies in raw data using foundational ontology. Inf Syst 38:784–799. doi: 10.1016/ CrossRefGoogle Scholar
  14. Förster J (2009) Relations between perceptual and conceptual scope: how global versus local processing fits a focus on similarity versus dissimilarity. J Exp Psychol Gen 138:88–111. doi: 10.1037/a0014484 PubMedCrossRefGoogle Scholar
  15. Foster DH, Gilson SJ (2002) Recognizing novel three-dimensional objects by summing signals from parts and views. Proc R Soc Lond Ser B Biol Sci 269:1939–1947. doi: 10.1098/rspb.2002.2119 CrossRefGoogle Scholar
  16. Gärdenfors P (1997) Symbolic, conceptual and subconceptual representations. In: Cantoni V, Gesù VD, Setti A, Tegolo D (eds) Human and machine perception. Springer, Berlin, pp 255–270CrossRefGoogle Scholar
  17. Gärdenfors P (2000) Conceptual spaces: the geometry of thought. The MIT Press, CambridgeGoogle Scholar
  18. Gärdenfors P (2004) How to make the semantic web more semantic. Formal ontology in information systems. In: Proceedings of the third international conference FOIS-2004. IOS Press, pp 17–34Google Scholar
  19. Gärdenfors P, Zenker F (2011) Using conceptual spaces to model the dynamics of empirical theories. In: Olsson EJ, Enqvist S (eds) Belief revision meets philosophy of science. Springer, Berlin, pp 137–153Google Scholar
  20. Garner WR (1974) The processing of information and structure. Lawrence Erlbaum, OxfordGoogle Scholar
  21. Gerstl P, Pribbenow S (1995) Midwinters, end games, and body parts: a classification of part-whole relations. Int J Hum Comput Stud 43:865–889. doi: 10.1006/ijhc.1995.1079 CrossRefGoogle Scholar
  22. Goldstone RL (1994) The role of similarity in categorization: providing a groundwork. Cognition 52:125–157PubMedCrossRefGoogle Scholar
  23. Graf M (2006) Coordinate transformations in object recognition. Psychol Bull 132:920–945. doi: 10.1037/0033-2909.132.6.920 PubMedCrossRefGoogle Scholar
  24. Guarino N (1998) Formal ontology and information systems. Formal ontology in information systems. IOS press, Amsterdam, pp 3–15Google Scholar
  25. Guarino N, Pribbenow S, Vieu L (1996) Modeling parts and wholes. Data Knowl Eng 20:257–258. doi: 10.1016/S0169-023X(96)00009-2 CrossRefGoogle Scholar
  26. Guizzardi G (2005) Ontological foundations for structural conceptual models. CTIT, The NetherlandsGoogle Scholar
  27. Hoffman DD, Singh M (1997) Salience of visual parts. Cognition 63:29–78. doi: 10.1016/S0010-0277(96)00791-3 PubMedCrossRefGoogle Scholar
  28. Hummel JE, Biederman I (1992) Dynamic binding in a neural network for shape recognition. Psychol Rev 99:480–517. doi: 10.1037/0033-295X.99.3.480 PubMedCrossRefGoogle Scholar
  29. Jäger G (2008) The evolution of convex categories. Linguist Philos 30:551–564. doi: 10.1007/s10988-008-9024-3 CrossRefGoogle Scholar
  30. Johansson I (2006) Formal mereology and ordinary language - Reply to Varzi. Appl Ontol 1:157–161Google Scholar
  31. Johansson I (2012) Natural science and mereology. In: Hans B, Johanna S, Guido I (eds) Handbook of Mereology. Philosophia Verlag, München, GermanyGoogle Scholar
  32. Ligozat G, Condotta J-F (2005) On the relevance of conceptual spaces for spatial and temporal reasoning. Spat Cogn Comput 5:1–27. doi: 10.1207/s15427633scc0501_1 CrossRefGoogle Scholar
  33. Love BC, Rouder JN, Wisniewski EJ (1999) A structural account of global and local processing. Cogn Psychol 38:291–316. doi: 10.1006/cogp.1998.0697 PubMedCrossRefGoogle Scholar
  34. Maddox WT (1992) Perceptual and decisional separability. Multidimensional models of perception and cognition. Lawrence Erlbaum Associates Inc., Hillsdale, pp 147–180Google Scholar
  35. Marr D (1982) Vision: a computational investigation into the human representation and processing of visual information. W. H. Freeman, San FranciscoGoogle Scholar
  36. Marr D, Nishihara HK (1978) Representation and recognition of the spatial organization of three-dimensional shapes. Proc R Soc Lon Ser B Biol Sci 200:269–294. doi: 10.1098/rspb.1978.0020 CrossRefGoogle Scholar
  37. Mash C (2006) Multidimensional shape similarity in the development of visual object classification. J Exp Child Psychol 95:128–152. doi: 10.1016/j.jecp.2006.04.002 PubMedCrossRefGoogle Scholar
  38. Melara RD (1992) The concept of perceptual similarity: from psychophysics to cognitive psychology. Psychophysical approaches to cognition. North-Holland, pp 303–388Google Scholar
  39. Moltmann F (1996) A new notion of part structure for natural language. Data Knowl Eng 20:323–345. doi: 10.1016/S0169-023X(96)00011-0 CrossRefGoogle Scholar
  40. Newell FN, Sheppard DM, Edelman S, Shapiro KL (2005) The interaction of shape- and location-based priming in object categorisation: evidence for a hybrid “what + where” representation stage. Vis Res 45:2065–2080. doi: 10.1016/j.visres.2005.02.021 PubMedCrossRefGoogle Scholar
  41. Peissig JJ, Tarr MJ (2007) Visual object recognition: do we know more now than we did 20 years ago? Annu Rev Psychol 58:75–96. doi: 10.1146/annurev.psych.58.102904.190114 PubMedCrossRefGoogle Scholar
  42. Pentland AP (1986) Perceptual organization and the representation of natural form. Artif Intell 28:293–331. doi: 10.1016/0004-3702(86)90052-4 CrossRefGoogle Scholar
  43. Rector A, Welty C, Noy N, Wallace E (2005) Simple part-whole relations in OWL ontologies. Accessed 3 Feb 2012
  44. Rosch E (1978) Principles of categorization. In: Margolis E, Laurence S (eds) Concepts: core readings. The MIT Press, Cambridge, pp 189–206Google Scholar
  45. Rosch E, Mervis CB (1975) Family resemblances: studies in the internal structure of categories. Cogn Psychol 7:573–605. doi: 10.1016/0010-0285(75)90024-9 CrossRefGoogle Scholar
  46. Shepard RN (1987) Toward a universal law of generalization for psychological science. Science 237:1317–1323. doi: 10.1126/science.3629243 PubMedCrossRefGoogle Scholar
  47. Shokoufandeh A, Macrini D, Dickinson S et al (2005) Indexing hierarchical structures using graph spectra. IEEE Trans Patt Anal Mach Intell 27:1125–1140. doi: 10.1109/TPAMI.2005.142 CrossRefGoogle Scholar
  48. Simons P (2003) Parts: a study in ontology, [Repr.]. Clarendon Press, OxfordGoogle Scholar
  49. Simons P (2006) Real wholes, real parts: mereology without algebra. J Philos 103:597–613Google Scholar
  50. Smith LB (2009) From fragments to geometric shape: changes in visual object recognition between 18 and 24 months. Curr Dir Psychol Sci 18:290–294. doi: 10.1111/j.1467-8721.2009.01654.x CrossRefGoogle Scholar
  51. Son JY, Smith LB, Goldstone RL (2008) Simplicity and generalization: short-cutting abstraction in children’s object categorizations. Cognition 108:626–638. doi: 10.1016/j.cognition.2008.05.002 PubMedCentralPubMedCrossRefGoogle Scholar
  52. Tomlinson M, Love BC (2006) Learning abstract relations through analogy to concrete exemplars. In: Proceedings of the cognitive science society. Lawrence Erlbaum Associates, Mahwah, pp 2269–2274Google Scholar
  53. Tversky A (1977) Features of similarity. Psychol Rev 84:327–352. doi: 10.1037/0033-295X.84.4.327 CrossRefGoogle Scholar
  54. Tversky B (1989) Parts, partonomies, and taxonomies. Dev Psychol 25:983–995CrossRefGoogle Scholar
  55. Tversky B, Hemenway K (1984) Objects, parts, and categories. J Exp Psychol Gen 113:169–193. doi: 10.1037/0096-3445.113.2.169 PubMedCrossRefGoogle Scholar
  56. Ullman S (2000) High-level vision: object recognition and visual cognition. MIT Press, CambridgeGoogle Scholar
  57. Varzi AC (2006) A note on the transitivity of parthood. Appl Ontol 1:141–146Google Scholar
  58. Varzi A (2011) Mereology. In: Edward NZ (ed) The Stanford Encyclopedia of Philosophy (Spring 2011 Edition).
  59. Winston ME, Chaffin R, Herrmann D (1987) A taxonomy of part-whole relations. Cogn Sci 11:417–444. doi: 10.1016/S0364-0213(87)80015-0 CrossRefGoogle Scholar
  60. Wu R, Mareschal D, Rakison DH (2010) Attention to multiple cues during spontaneous object labeling. Infancy 16:545–556. doi: 10.1111/j.1532-7078.2010.00061.x CrossRefGoogle Scholar
  61. Zhu SC, Yuille AL (1996) FORMS: a flexible object recognition and modelling system. Int J Comput Vis. doi: 10.1007/BF00208719 Google Scholar

Copyright information

© Marta Olivetti Belardinelli and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Sandro Rama Fiorini
    • 1
  • Peter Gärdenfors
    • 2
  • Mara Abel
    • 1
  1. 1.Institute of InformaticsFederal University of Rio Grande do Sul (UFRGS)Porto AlegreBrazil
  2. 2.Lund University Cognitive ScienceLund UniversityLundSweden

Personalised recommendations