Cognitive Processing

, Volume 13, Supplement 1, pp 141–146 | Cite as

Space coding for sensorimotor transformations can emerge through unsupervised learning

  • Michele De Filippo De Grazia
  • Simone Cutini
  • Matteo Lisi
  • Marco Zorzi
Short Report


The posterior parietal cortex (PPC) is fundamental for sensorimotor transformations because it combines multiple sensory inputs and posture signals into different spatial reference frames that drive motor programming. Here, we present a computational model mimicking the sensorimotor transformations occurring in the PPC. A recurrent neural network with one layer of hidden neurons (restricted Boltzmann machine) learned a stochastic generative model of the sensory data without supervision. After the unsupervised learning phase, the activity of the hidden neurons was used to compute a motor program (a population code on a bidimensional map) through a simple linear projection and delta rule learning. The average motor error, calculated as the difference between the expected and the computed output, was less than 3°. Importantly, analyses of the hidden neurons revealed gain-modulated visual receptive fields, thereby showing that space coding for sensorimotor transformations similar to that observed in the PPC can emerge through unsupervised learning. These results suggest that gain modulation is an efficient coding strategy to integrate visual and postural information toward the generation of motor commands.


Neural network Generative model Sensorimotor transformations Gain modulation Parietal cortex 


  1. Andersen RA, Essick GK, Siegel RM (1985) The encoding of spatial location by posterior parietal neurons. Science 230:456–458PubMedCrossRefGoogle Scholar
  2. Brotchie P, Andersen R, Snyder L (1995) Head position signals used by parietal neurons to encode locations of visual stimuli. Nature 375:232–235PubMedCrossRefGoogle Scholar
  3. Buneo CA, Andersen RA (2006) The posterior parietal cortex: sensorimotor interface for the planning and online control of visually guided movements. Neuropsychologia 44(13):2594–2606PubMedCrossRefGoogle Scholar
  4. Colby CL, Goldberg ME (1999) Space and attention in parietal cortex. Ann Rev Neurosci 22:319–349PubMedCrossRefGoogle Scholar
  5. Galletti C, Gamberini M, Kutz DF, Fattori P, Luppino G, Matelli M (2001) The cortical connections of area V6: an occipito-parietal network processing visual information. Eur J Neurosci 13(8):1572–1588PubMedCrossRefGoogle Scholar
  6. Hinton GE (2007) Learning multiple layers of representation. Trends Cogn Sci 11(10):428–434PubMedCrossRefGoogle Scholar
  7. Hinton GE, Salakhutdinov RR (2006) Reducing the dimensionality of data with neural networks. Science 313(5786):504–507PubMedCrossRefGoogle Scholar
  8. Hinton GE, Osindero S, Teh YW (2006) A fast learning algorithm for deep belief nets. Neural Comput 18(7):1527–1554PubMedCrossRefGoogle Scholar
  9. Mazzoni P, Andersen RA (1991) A more biologically plausible learning rule for neural networks. Neurobiology 88(May):4433–4437Google Scholar
  10. Mountcastle VB, Lynch JC, Georgopoulos A, Sakata H, Acuna C (1975) Posterior parietal association cortex of the monkey: command functions for operations within extrapersonal space. J Neurophysiol 38(4):871–908PubMedGoogle Scholar
  11. Pouget A, Snyder LH (2000) Computational approaches to sensorimotor transformations. Nat Neurosci 3 Suppl(november):1192–1198Google Scholar
  12. Sakata H, Taira M (1994) Parietal control of hand action. Curr Opin Neurobiol 4(6):847–856PubMedCrossRefGoogle Scholar
  13. Salinas E, Sejnowski TJ (2001) Gain modulation in the central nervous system: where behavior, neurophysiology, and computation meet. Neuroscientist 7(5):430–440PubMedCrossRefGoogle Scholar
  14. Stoianov I, Zorzi M (2012) Emergence of a “visual number sense” in hierarchical generative models. Nat Neurosci 15(2):194–196PubMedCrossRefGoogle Scholar
  15. Zipser D, Andersen RA (1988) A back-propagation programmed network that simulates response properties of a subset of posterior parietal neurons. Nature 331(6158):679–684PubMedCrossRefGoogle Scholar

Copyright information

© Marta Olivetti Belardinelli and Springer-Verlag 2012

Authors and Affiliations

  • Michele De Filippo De Grazia
    • 1
  • Simone Cutini
    • 1
  • Matteo Lisi
    • 1
  • Marco Zorzi
    • 1
  1. 1.Department of General Psychology, Center for Cognitive ScienceUniversity of PadovaPaduaItaly

Personalised recommendations