Cognitive Processing

, Volume 13, Issue 3, pp 255–265 | Cite as

EEG source imaging during two Qigong meditations

  • Pascal L. Faber
  • Dietrich Lehmann
  • Shisei Tei
  • Takuya Tsujiuchi
  • Hiroaki Kumano
  • Roberto D. Pascual-Marqui
  • Kieko Kochi
Research Report


Experienced Qigong meditators who regularly perform the exercises “Thinking of Nothing” and “Qigong” were studied with multichannel EEG source imaging during their meditations. The intracerebral localization of brain electric activity during the two meditation conditions was compared using sLORETA functional EEG tomography. Differences between conditions were assessed using t statistics (corrected for multiple testing) on the normalized and log-transformed current density values of the sLORETA images. In the EEG alpha-2 frequency, 125 voxels differed significantly; all were more active during “Qigong” than “Thinking of Nothing,” forming a single cluster in parietal Brodmann areas 5, 7, 31, and 40, all in the right hemisphere. In the EEG beta-1 frequency, 37 voxels differed significantly; all were more active during “Thinking of Nothing” than “Qigong,” forming a single cluster in prefrontal Brodmann areas 6, 8, and 9, all in the left hemisphere. Compared to combined initial–final no-task resting, “Qigong” showed activation in posterior areas whereas “Thinking of Nothing” showed activation in anterior areas. The stronger activity of posterior (right) parietal areas during “Qigong” and anterior (left) prefrontal areas during “Thinking of Nothing” may reflect a predominance of self-reference, attention and input-centered processing in the “Qigong” meditation, and of control-centered processing in the “Thinking of Nothing” meditation.


Meditation LORETA EEG Qigong Meditation exercise “Thinking of Nothing” 



This work was supported in part by grant Nr. 44/06 from the Bial Foundation, S. Mamede do Coronado, Portugal. We thank Qigong Master Feng-San Lee for the possibility to contact the meditators of his group and Mitsumasa Kawakami for helpful comments to experimental settings.


  1. Aftanas LI, Golocheikine SA (2001) Human anterior and frontal midline theta and lower alpha reflect emotionally positive state and internalized attention: high-resolution EEG investigation of meditation. Neurosci Lett 310(1):57–60PubMedCrossRefGoogle Scholar
  2. Aftanas L, Golosheykin S (2005) Impact of regular meditation practice on EEG activity at rest and during evoked negative emotions. Int J Neurosci 115(6):893–909PubMedCrossRefGoogle Scholar
  3. Babiloni C, Ferretti A, Del Gratta C, Carducci F, Vecchio F, Romani GL, Rossini PM (2005) Human cortical responses during one-bit delayed-response tasks: an fMRI study. Brain Res Bull 65(5):383–390PubMedCrossRefGoogle Scholar
  4. Baerentsen KB, Stødkilde-Jørgensen H, Sommerlund B, Hartmann T, Damsgaard-Madsen J, Fosnaes M, Green AC (2010) An investigation of brain processes supporting meditation. Cogn Process 11(1):57–84PubMedCrossRefGoogle Scholar
  5. Baijal S, Srinivasan N (2010) Theta activity and meditative states: spectral changes during concentrative meditation. Cogn Process 11(1):31–38PubMedCrossRefGoogle Scholar
  6. Banquet JP (1973) Spectral analysis of the EEG in meditation. Electroenceph Clin Neurophysiol 35(2):143–151PubMedCrossRefGoogle Scholar
  7. Basile LF, Lozano MD, Alvarenga MY, Pereira JF, Machado S, Velasques B, Ribeiro P, Piedade R, Anghinah R, Knyazev G, Ramos RT (2010) Minor and unsystematic cortical topographic changes of attention correlates between modalities. PLoS ONE 5(12):e15022PubMedCrossRefGoogle Scholar
  8. Benson H, Malhotra MS, Goldman RF, Jacobs GD, Hopkins PJ (1990) Three case reports of the metabolic and electroencephalographic changes during advanced Buddhist meditation techniques. Behav Med 16(2):90–95PubMedCrossRefGoogle Scholar
  9. Berkovich-Ohana A, Glicksohn J, Goldstein A (2012) Mindfulness-induced changes in gamma band activity – Implications for the default mode network, self-reference and attention. Clin Neurophysiol 123(4):700–710PubMedCrossRefGoogle Scholar
  10. Brefczynski-Lewis JA, Lutz A, Schaefer HS, Levinson DB, Davidson RJ (2007) Neural correlates of attentional expertise in long-term meditation practitioners. Proc Natl Acad Sci USA 104(27):11483–11488PubMedCrossRefGoogle Scholar
  11. Cahn BR, Polich J (2006) Meditation states and traits: EEG, ERP, and neuroimaging studies. Psychol Bull 132(2):180–211PubMedCrossRefGoogle Scholar
  12. Cahn BR, Delorme A, Polich J (2010) Occipital gamma activation during Vipassana meditation. Cogn Process 11(1):39–56PubMedCrossRefGoogle Scholar
  13. Caplan JB, Luks TL, Simpson GV, Glaholt M, McIntosh AR (2006) Parallel networks operating across attentional deployment and motion processing: a multi-seed partial least squares fMRI study. Neuroimage 29(4):1192–1202PubMedCrossRefGoogle Scholar
  14. Chan AS, Cheung MC, Sze SL, Leung WW, Shi D (2011) Shaolin dan tian breathing fosters relaxed and attentive mind: a randomized controlled neuro-electrophysiological study. Evid-Based Compl Altern Med 2011:180704 (11 pages)Google Scholar
  15. Constantinidis C, Steinmetz M (1996) Neuronal activity in posterior parietal area 7a during the delay periods of a spatial memory task. J Neurophysiol 76:1352–1355PubMedGoogle Scholar
  16. Conway MA (2005) Memory and the self. J Mem Lang 53(4):594–628CrossRefGoogle Scholar
  17. Cooper NR, Croft RJ, Dominey SJJ, Burgess AP, Gruzelier JH (2003) Paradox lost? Exploring the role of alpha oscillations during externally vs. internally directed attention and the implications for idling and inhibition hypotheses. Int J Psychophysiol 47:65–74PubMedCrossRefGoogle Scholar
  18. Das NN, Gastaut H (1957) Variation de l’activité électrique du cerveau, du coeur et des muscles squelettiques au cours de la méditation et de l’extase yogique. Electroenceph Clin Neurophysiol (Suppl 6):211–219Google Scholar
  19. Davanger S, Ellingsen O, Holen A, Hugdahl K (2010) Meditation-specific prefrontal cortical activation during acem meditation: an fMRI study. Percept Mot Skills 111(1):291–306PubMedCrossRefGoogle Scholar
  20. Davidson JM (1976) The physiology of meditation and mystical states of consciousness. Perspect Biol Med 19(3):345–379PubMedGoogle Scholar
  21. Davidson RJ, Goleman DJ (1977) The role of attention in meditation and hypnosis: a psychobiological perspective on transformations of consciousness. Int J Clin Exp Hyp 25:291–308CrossRefGoogle Scholar
  22. Davidson RJ, Kabat-Zinn J, Schumacher J, Rosenkranz M, Muller D, Santorelli SF, Urbanowski F, Harrington A, Bonus K, Sheridan JF (2003) Alterations in brain and immune function produced by mindfulness meditation. Psychosom Med 65(4):564–570PubMedCrossRefGoogle Scholar
  23. Dehaene S, Tzourio N, Frak V, Raynaud L, Cohen L, Mehler J, Mazoyer B (1996) Cerebral activations during number multiplication and comparison: a PET study. Neuropsychologia 34:1097–1106PubMedCrossRefGoogle Scholar
  24. Dierks T, Jelic V, Pascual-Marqui RD, Wahlund LO, Julin P, Linden DEJ, Maurer K, Winblad B, Nordberg A (2000) Spatial pattern of cerebral glucose metabolism (PET) correlates with localization of intracerebral EEG-generators in Alzheimer’s disease. Clin Neurophysiol 111:1817–1824PubMedCrossRefGoogle Scholar
  25. Dietrich A (2003) Functional neuroanatomy of altered states of consciousness: the transient hypofrontality hypothesis. Conscious Cogn 12(2):231–256PubMedCrossRefGoogle Scholar
  26. Dunn BR, Hartigan JA, Mikulas WL (1999) Concentration and mindfulness meditations: unique forms of consciousness? Appl Psychophys Biof 24(3):147–165CrossRefGoogle Scholar
  27. Engström M, Söderfeldt B (2010) Brain activation during compassion meditation: a case study. J Altern Complem Med 16(5):597–599CrossRefGoogle Scholar
  28. Faber PL, Steiner ME, Lehmann D, Pascual-Marqui RD, Jäncke L, Esslen M, Gianotti LRR (2008) Deactivation of the medial prefrontal cortex in experienced Zen meditators. Brain Topogr 20:172Google Scholar
  29. Fischer R (1971) A cartography of the ecstatic and meditative states. Science 174(4012):897–904PubMedCrossRefGoogle Scholar
  30. Gellhorn E, Kiely WF (1972) Mystical states of consciousness: neurophysiological and clinical aspects. J Nerv Ment Dis 154(6):399–405PubMedCrossRefGoogle Scholar
  31. Goel V, Gold B, Kapur S, Houle S (1997) The seats of reason? An imaging study of deductive and inductive reasoning. NeuroReport 8(5):1305–1310PubMedCrossRefGoogle Scholar
  32. Hanakawa T, Honda M, Sawamoto N, Okada T, Yonekura Y, Fukuyama H, Shibasaki H (2002) The role of rostral Brodmann area 6 in mental-operation tasks: an integrative neuroimaging approach. Cereb Cortex 12(11):1157–1170PubMedCrossRefGoogle Scholar
  33. Hasenkamp W, Wilson-Mendenhall CD, Duncan E, Barsalou LW (2012) Mind wandering and attention during focused meditation: a fine-grained temporal analysis of fluctuating cognitive states. Neuroimage 59(1):750–760PubMedCrossRefGoogle Scholar
  34. Hebert R, Lehmann D (1977) Theta bursts: an EEG pattern in normal subjects practicing the transcendental meditation technique. Electroenceph Clin Neurophysiol 42(3):397–405PubMedCrossRefGoogle Scholar
  35. Hölzel B, Ott U (2006) Relationships between meditation depth, absorption, meditation practice, and mindfulness: a latent variable approach. J Transpers Psychol 38(2):179–199Google Scholar
  36. Hölzel BK, Ott U, Hempel H, Hackl A, Wolf K, Stark R, Vaitl D (2007) Differential engagement of anterior cingulate and adjacent medial frontal cortex in adept meditators and non-meditators. Neurosci Lett 421(1):16–21PubMedCrossRefGoogle Scholar
  37. Itoh M, Miyazaki H, Takahashi Y (1996) Imaging of mind using positron emission tomography. J Intl Soc Life Info Sci 14(1):76–80Google Scholar
  38. Jasper HH (1958) The ten-twenty electrode system of the International Federation. Electroenceph Clin Neurophysiol 10:371–375Google Scholar
  39. Jensen O, Gelfand J, Kounios J, Lisman JE (2002) Oscillations in the alpha band (9–12 Hz) increase with memory load during retention in a short-term memory task. Cereb Cortex 12(8):877–882PubMedCrossRefGoogle Scholar
  40. Jha AP, Krompinger J, Baime MJ (2007) Mindfulness training modifies subsystems of attention. Cogn Affect Behav Neurosci 7(2):109–119PubMedCrossRefGoogle Scholar
  41. Jovicich J, Peters RL, Koch C, Braun J, Chang L, Ernst T (2001) Brain areas specific for attentional load in a motion-tracking task. J Cogn Neurosci 13(8):1048–1058PubMedCrossRefGoogle Scholar
  42. Kabat-Zinn J (1982) An outpatient program in behavioral medicine for chronic pain patients based on the practice of mindfulness meditation: theoretical considerations and preliminary results. Gen Hosp Psychiatry 4(1):33–47PubMedCrossRefGoogle Scholar
  43. Kasamatsu A, Hirai T (1966) An electroencephalographic study on the Zen meditation (Zazen). Folia Psychiatrica et Neurologica Japonica 20:315–336PubMedGoogle Scholar
  44. Kihlstrom JF, Beer JS, Klein SB (2003) Self and identity as memory. In: Leary MR, Tangney J (eds) Handbook of self and identity. Guilford Press, New York, pp 68–90Google Scholar
  45. Kisley MA, Cornwell ZM (2006) Gamma and beta neural activity evoked during a sensory gating paradigm: effects of auditory, somatosensory and cross-modal stimulation. Clin Neurophysiol 117(11):2549–2563PubMedCrossRefGoogle Scholar
  46. Klimesch W (1999) EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis. Brain Res Brain Res Rev 29(2–3):169–195PubMedCrossRefGoogle Scholar
  47. Kubicki S, Herrmann WM, Fichte K, Freund G (1979) Reflections on the topics: EEG frequency bands and regulation of vigilance. Pharmacopsychiatry 12:237–245CrossRefGoogle Scholar
  48. Kübler A, Dixon V, Garavan H (2006) Automaticity and reestablishment of executive control-an fMRI study. J Cogn Neurosci 18(8):1331–1342PubMedCrossRefGoogle Scholar
  49. Lagopoulos J, Xu J, Rasmussen I, Vik A, Malhi GS, Eliassen CF, Arntsen IE, Saether JG, Hollup S, Holen A, Davanger S, Ellingsen Ø (2009) Increased theta and alpha EEG activity during nondirective meditation. J Altern Complem Med 15(11):1187–1192CrossRefGoogle Scholar
  50. Lavallee CF, Hunter MD, Persinger MA (2011) Intracerebral source generators characterizing concentrative meditation. Cogn Process 12(2):141–150PubMedCrossRefGoogle Scholar
  51. Lee MS, Bae BH, Ryu H, Sohn JH, Kim SY, Chung HT (1997) Changes in alpha wave and state anxiety during Chun Do Sun Bup Qi-training in trainees with open eyes. Am J Chinese Med 25:289–299CrossRefGoogle Scholar
  52. Lehmann D, Grass P, Meier B (1995) Spontaneous conscious covert cognition states and brain electric spectral states in canonical correlations. Int J Psychophysiol 19(1):41–52PubMedCrossRefGoogle Scholar
  53. Lehmann D, Faber PL, Achermann P, Jeanmonod D, Gianotti LRR, Pizzagalli D (2001) Brain sources of EEG gamma frequency during volitionally meditation-induced, altered states of consciousness, and experience of the self. Psychiatr Res Neuroimaging 108(2):111–121CrossRefGoogle Scholar
  54. Lehmann D, Pascual-Marqui RD, Strik WK, Koenig T (2010) Core networks for visual-concrete and abstract thought content: a brain electric microstate analysis. Neuroimage 49(1):1073–1079PubMedCrossRefGoogle Scholar
  55. Lehmann D, Faber PL, Tei S, Pascual-Marqui RD, Milz P, Kochi K (2012) Reduced functional connectivity between cortical sources in five meditation traditions detected with lagged coherence using EEG tomography. Neuroimage 60:1574–1586PubMedCrossRefGoogle Scholar
  56. Lloyd D, Morrison I, Roberts N (2006) Role for human posterior parietal cortex in visual processing of aversive objects in peripersonal space. J Neurophysiol 95(1):205–214PubMedCrossRefGoogle Scholar
  57. Lopes da Silva F (1991) Neural mechanisms underlying brain waves: from neural membranes to networks. Electroenceph Clin Neurophysiol 79(2):81–93PubMedCrossRefGoogle Scholar
  58. Lou HC, Kjaer TW, Friberg L, Wildschiodtz G, Holm S, Nowak M (1999) A 15O-H2O PET study of meditation and the resting state of normal consciousness. Hum Brain Mapp 7(2):98–105PubMedCrossRefGoogle Scholar
  59. Luks TL, Simpson GV (2004) Preparatory deployment of attention to motion activates higher order motion-processing brain regions. Neuroimage 22:1515–1522PubMedCrossRefGoogle Scholar
  60. Lutz A, Greischar LL, Rawlings NB, Ricard M, Davidson RJ (2004) Long-term meditators self-induce high-amplitude gamma synchrony during mental practice. Proc Natl Acad Sci USA 101(46):16369–16373PubMedCrossRefGoogle Scholar
  61. Lutz A, Slagter HA, Dunne JD, Davidson RJ (2008) Attention regulation and monitoring in meditation. Trends Cogn Sci 12:163–169PubMedCrossRefGoogle Scholar
  62. Makeig S, Inlow M (1993) Lapses in alertness: coherence of fluctuations in performance and EEG spectrum. Electroenceph Clin Neurophysiol 86(1):23–35PubMedCrossRefGoogle Scholar
  63. Mellet E, Tzourio N, Crivello F, Joliot M, Denis M, Mazoyer B (1996) Functional anatomy of spatial imagery generated from verbal instructions. J Neurosci 16:6504–6512PubMedGoogle Scholar
  64. Mikulas WL (1990) Mindfulness, self-control, and personal growth. In: Kwee MGT (ed) Psychotherapy, meditation, and health. East West Publications, London, pp 151–164Google Scholar
  65. Minegishi Y, Isotani T, Yoshimura M, Yamada K, Nishida K, Morita S, Saito Y, Irisawa S, Ichikawa M, Kinoshita T, Kihara H (2009) Spatial brain electric activity changes after Kakurin-qigong. In: Kobayashi T, Ozaki I, Nagata K (eds) Brain topography and multimodal imaging. Kyoto University Press, Kyoto, pp 107–108Google Scholar
  66. Mulert C, Jäger L, Schmitt R, Bussfeld P, Pogarell O, Möller HJ, Juckel G, Hegerl U (2004) Integration of fMRI and simultaneous EEG: towards a comprehensive understanding of localization and time-course of brain activity in target detection. Neuroimage 22:83–94PubMedCrossRefGoogle Scholar
  67. Murata T, Koshino Y, Omori M, Murata I, Nishio M, Sakamoto K, Horie T, Isaki K (1994) Quantitative EEG Study on Zen Meditation (Zazen). Jpn J Psychiat Neurol 48(4):881–890Google Scholar
  68. Newberg AB, Iversen J (2003) The neural basis of the complex mental task of meditation: neurotransmitter and neurochemical considerations. Med Hypotheses 61(2):282–291PubMedCrossRefGoogle Scholar
  69. Newberg A, Alavi A, Baime M, Pourdehnad M, Santanna J, d’Aquili E (2001) The measurement of regional cerebral blood flow during the complex cognitive task of meditation: a preliminary SPECT study. Psychiatry Res 106(2):113–122PubMedCrossRefGoogle Scholar
  70. Nichols TE, Holmes AP (2002) Nonparametric permutation tests for functional neuroimaging: a primer with examples. Hum Brain Mapp 15:1–25PubMedCrossRefGoogle Scholar
  71. Niedermeyer E, Lopes da Silva F (2005) Electroencephalography: basic principles, clinical applications, and related fields, 5th edn. Lippincott Williams Wilkins, PhiladelphiaGoogle Scholar
  72. Okuda J, Fujii T, Yamadori A, Kawashima R, Tsukiura T, Ohtake H, Fukatsu R, Suzuki K, Itoh M, Fukuda H (2000) Retention of words in long-term memory: a functional neuroanatomical study with PET. NeuroReport 11(2):323–328PubMedCrossRefGoogle Scholar
  73. Palva S, Palva JM (2007) New vistas for alpha-frequency band oscillations. Trends Neurosci 30(4):150–158PubMedCrossRefGoogle Scholar
  74. Pan W, Zhang L, Xia Y (1994) The difference in EEG theta waves between concentrative and non-concentrative Qigong states—a power spectrum and topographic mapping study. J Trad Chin Med 14(3):212–218Google Scholar
  75. Pascual-Marqui RD (2002) Standardized low-resolution brain electromagnetic tomography (sLORETA): technical details. Methods Find Exp Clin Pharmacol 24(Suppl D):5–12PubMedGoogle Scholar
  76. Pascual-Marqui RD, Michel CM, Lehmann D (1994) Low resolution electromagnetic tomography: a new method for localizing electrical activity in the brain. Int J Psychophysiol 18(1):49–65PubMedCrossRefGoogle Scholar
  77. Pascual-Marqui RD, Lehmann D, Koenig T, Kochi K, Merlo MC, Hell D, Koukkou M (1999) Low resolution brain electromagnetic tomography (LORETA) functional imaging in acute, neuroleptic-naive, first-episode, productive schizophrenia. Psychiatry Res 90(3):169–179PubMedCrossRefGoogle Scholar
  78. Pascual-Marqui RD, Esslen M, Kochi K, Lehmann D (2002) Functional imaging with low-resolution brain electromagnetic tomography (LORETA): a review. Method Find Exp Clin Pharmacol 24(Suppl C):91–95Google Scholar
  79. Peng CK, Henry IC, Mietus JE, Hausdorff JM, Khalsa G, Benson H, Goldberger AL (2004) Heart rate dynamics during three forms of meditation. Int J Cardiol 95(1):19–27PubMedCrossRefGoogle Scholar
  80. Perlman DM, Salomons TV, Davidson RJ, Lutz A (2010) Differential effects on pain intensity and unpleasantness of two meditation practices. Emotion 10(1):65–71PubMedCrossRefGoogle Scholar
  81. Piron H (2003) Meditation depth, mental health, and personal development. J Meditat Meditat Res 3:45–58Google Scholar
  82. Qin Z, Jin Y, Lin S, Hermanowicz NS (2009) A forty-five year follow-up EEG study of Qigong practice. Int J Neurosci 119(4):538–552PubMedCrossRefGoogle Scholar
  83. Raffone A, Srinivasan N (2010) The exploration of meditation in the neuroscience of attention and consciousness. Cogn Process 11(1):1–7PubMedCrossRefGoogle Scholar
  84. Ranganath C, Johnson MK, D’Esposito M (2003) Prefrontal activity associated with working memory and episodic long-term memory. Neuropsychologia 41(3):378–389PubMedCrossRefGoogle Scholar
  85. Ray WJ, Cole HW (1985) EEG alpha activity reflects attentional demands, and beta activity reflects emotional and cognitive processes. Science 228:750–752PubMedCrossRefGoogle Scholar
  86. Reverberi C, Cherubini P, Rapisarda A, Rigamonti E, Caltagirone C, Frackowiak RS, Macaluso E, Paulesu E (2007) Neural basis of generation of conclusions in elementary deduction. Neuroimage 38(4):752–762PubMedCrossRefGoogle Scholar
  87. Ruby P, Decety J (2004) How would you feel versus how do you think she would feel? A neuroimaging study of perspective-taking with social emotions. J Cogn Neurosci 16(6):988–999PubMedCrossRefGoogle Scholar
  88. Sarazin M, Pillon B, Giannakopoulos P, Rancurel G, Samson Y, Dubois B (1998) Clinicometabolic dissociation of cognitive functions and social behavior in frontal lobe lesions. Neurology 51(1):142–148PubMedCrossRefGoogle Scholar
  89. Snyder LH, Batista AP, Andersen RA (1997) Coding of intention in the posterior parietal cortex. Nature 386:167–170PubMedCrossRefGoogle Scholar
  90. Sun F, Wang J, Liu G, Jiao X, Zhang Z, Shi Y, Zhang T (1984) An analysis on EEG power spectrum and coherence during quiet state in QiGong. Acta Psychologica Sinica 17(4):76–81Google Scholar
  91. Tallon-Baudry C, Bertrand O (1999) Oscillatory gamma activity in humans and its role in object representation. Trends Cogn Sci 3(4):151–162PubMedCrossRefGoogle Scholar
  92. Tart CT (1969) Altered states of consciousness. Wiley, New YorkGoogle Scholar
  93. Tebecis AK (1975) A controlled study of the EEG during transcendental meditation: comparison with hypnosis. Folia Psychiatr Neurol Jpn 29(4):305–313PubMedGoogle Scholar
  94. Tei S, Faber PL, Lehmann D, Tsujiuchi T, Kumano H, Pascual-Marqui RD, Gianotti LR, Kochi K (2009) Meditators and non-meditators: EEG source imaging during resting. Brain Topogr 22(3):158–165PubMedCrossRefGoogle Scholar
  95. Travis F (2001) Autonomic and EEG patterns distinguish Transcending from other experiences during transcendental Meditation practice. Int J Psychophysiol 42:1–9PubMedCrossRefGoogle Scholar
  96. Travis F (2011) Comparison of coherence, amplitude, and eLORETA patterns during Transcendental Meditation and TM-Sidhi practice. Int J Psychophysiol 81(3):198–202PubMedCrossRefGoogle Scholar
  97. Travis F, Arenander A (2006) Cross-sectional and longitudinal study of effects of transcendental meditation practice on interhemispheric frontal asymmetry and frontal coherence. Int J Neurosci 116(12):1519–1538PubMedCrossRefGoogle Scholar
  98. Travis F, Shear J (2010) Focused attention, open monitoring and automatic selftranscending: Categories to organize meditations from Vedic, Buddhist and Chinese traditions. Conscious Cogn 19:1110–1118PubMedCrossRefGoogle Scholar
  99. Travis F, Haaga DA, Hagelin J, Tanner M, Arenander A, Nidich S, Gaylord-King C, Grosswald S, Rainforth M, Schneider RH (2010) A self-referential default brain state: patterns of coherence, power, and eLORETA sources during eyes-closed rest and Transcendental Meditation practice. Cogn Process 11(1):21–30PubMedCrossRefGoogle Scholar
  100. Tuladhar AM, ter Huurne N, Schoffelen JM, Maris E, Oostenveld R, Jensen O (2007) Parieto-occipital sources account for the increase in alpha activity with working memory load. Hum Brain Mapp 28:785–792PubMedCrossRefGoogle Scholar
  101. Tulving E, Kapur S, Markowitsch HJ, Craik FI, Habib R, Houle S (1994) Neuroanatomical correlates of retrieval in episodic memory: auditory sentence recognition. Proc Natl Acad Sci USA 91(6):2012–2015PubMedCrossRefGoogle Scholar
  102. Vaitl D, Birbaumer N, Gruzelier J, Jamieson G, Kotchoubey B, Kübler A, Lehmann D, Miltner WHR, Ott U, Pütz P, Sammer G, Strauch I, Strehl U, Wackermann J, Weiss T (ASC Consortium) (2005) Psychobiology of altered states of consciousness. Psychol Bull 131(1):98–127Google Scholar
  103. Vitacco D, Brandeis D, Pascual-Marqui R, Martin E (2002) Correspondence of event-related potential tomography and functional magnetic resonance imaging during language processing. Hum Brain Mapp 17:4–12PubMedCrossRefGoogle Scholar
  104. Wallace RK, Benson H, Wilson AF (1971) A wakeful hypometabolic physiologic state. Am J Physiol 221(3):795–799PubMedGoogle Scholar
  105. Wang DJ, Rao H, Korczykowski M, Wintering N, Pluta J, Khalsa DS, Newberg AB (2011) Cerebral blood flow changes associated with different meditation practices and perceived depth of meditation. Psychiatry Res 191(1):60–67PubMedCrossRefGoogle Scholar
  106. Worrell GA, Lagerlund TD, Sharbrough FW, Brinkmann BH, Busacker NE, Cicora KM, O’Brien TJ (2000) Localization of the epileptic focus by Low-Resolution Electromagnetic Tomography in patients with a lesion demonstrated by MRI. Brain Topogr 12:273–282PubMedCrossRefGoogle Scholar
  107. Wrobel A (2000) Beta activity: a carrier for visual attention. Acta Neurobiol Exp (Warsz) 60(2):247–260Google Scholar
  108. Yang SH, Yang QF, Shi JM (1994) Observation of electroencephalogram spectrum changes over one year of Qigong training. [Article in Chinese, Abstract in English] Zhongguo Zhong Xi Yi Jie He Za Zhi 14(11):643–646Google Scholar
  109. Yang L, Wilke C, Brinkmann B, Worrell GA, He B (2011) Dynamic imaging of ictal oscillations using non-invasive high-resolution EEG. Neuroimage 56(4):1908–1917PubMedCrossRefGoogle Scholar
  110. Yuasa Y (1990) Ki to ningen kagaku: Nitchu shinpojumu koenshu (Qi and human science; in Japanese). Hiraga Publishing, Tokyo 361 ppGoogle Scholar
  111. Zeidan F, Johnson SK, Gordon NS, Goolkasian P (2010) Effects of brief and sham mindfulness meditation on mood and cardiovascular variables. J Altern Complem Med 16:867–873CrossRefGoogle Scholar
  112. Zhang J-Z, Zhao J, He Q-N (1988) EEG findings during special psychical state (Qi Gong state) by means of compressed spectral array and topographic mapping. Comput Biol Med 18(6):455–463PubMedCrossRefGoogle Scholar
  113. Zumsteg D, Wennberg RA, Treyer V, Buck A, Wieser HG (2005) H2(15)O or 13NH3 PET and electromagnetic tomography (LORETA) during partial status epilepticus. Neurology 65:1657–1660PubMedCrossRefGoogle Scholar
  114. Zumsteg D, Friedman A, Wieser HG, Wennberg RA (2006a) Propagation of interictal discharges in temporal lobe epilepsy: correlation of spatiotemporal mapping with intracranial foramen ovale electrode recordings. Clin Neurophysiol 117:2615–2626PubMedCrossRefGoogle Scholar
  115. Zumsteg D, Lozano AM, Wennberg RA (2006b) Depth electrode recorded cerebral responses with deep brain stimulation of the anterior thalamus for epilepsy. Clin Neurophysiol 117:1602–1609PubMedCrossRefGoogle Scholar
  116. Zysset S, Huber O, Ferstl E, von Cramon DY (2002) The anterior frontomedian cortex and evaluative judgment: an fMRI study. Neuroimage 15(4):983–991PubMedCrossRefGoogle Scholar

Copyright information

© Marta Olivetti Belardinelli and Springer-Verlag 2012

Authors and Affiliations

  • Pascal L. Faber
    • 1
  • Dietrich Lehmann
    • 1
  • Shisei Tei
    • 1
    • 2
    • 4
  • Takuya Tsujiuchi
    • 3
  • Hiroaki Kumano
    • 2
    • 3
  • Roberto D. Pascual-Marqui
    • 1
  • Kieko Kochi
    • 1
  1. 1.The KEY Institute for Brain-Mind ResearchClinic for Affective Disorders and General Psychiatry Zurich East, University Hospital of PsychiatryZurichSwitzerland
  2. 2.Department of Stress Science and Psychosomatic Medicine, Graduate School of MedicineThe University of TokyoHongo, Bunkyo-kuJapan
  3. 3.Department of Health Science and Social Welfare, Faculty of Human SciencesWaseda UniversityTokorozawa-CityJapan
  4. 4.Department of PsychiatryKyoto University Graduate School of MedicineSakyo-kuJapan

Personalised recommendations