Cognitive Processing

, Volume 13, Issue 3, pp 231–241 | Cite as

Motion as manipulation: implementation of force–motion analogies by event-file binding and action planning

  • Chris FieldsEmail author
Research Report


Tool-improvisation analogies are structure-mapping inferences implemented, in many species, by event-file binding and pre-motor action planning. These processes act on multi-modal representations of currently perceived situations and eventuate in motor acts that can be directly evaluated for success or failure; they employ implicit representations of force–motion relations encoded by the pre-motor system and do not depend on explicit, language-like representations of relational concepts. A detailed reconstruction of the analogical reasoning steps involved in Rutherford’s and Bohr’s development of the first quantized-orbit model of atomic structure is used to show that human force–motion analogies can in general be implemented by these mechanisms. This event-file manipulation model of the implementation of force–motion analogies is distinguished from the standard view that structure-mapping analogies require the manipulation of explicit, language-like representations of relational concepts.


Structure mapping Tool improvisation Rutherford atom analogy Pre-motor system Mirror-neuron system Physical reasoning Conceptual reasoning 



Thanks to Eric Dietrich for three decades of stimulating and enjoyable conversations about algorithms and analogy. The comments and suggestions of three anonymous referees contributed significantly to the presentation.

Conflict of interest

The author states that he has no conflicts of interest relevant to the reported research.


  1. Bar M (2008) The proactive brain: using analogies and associations to generate predictions. Trends Cogn Sci 11(7):280–289CrossRefGoogle Scholar
  2. Barsalou L (1999) Perceptual symbol systems. Behav Brain Sci 22:577–660PubMedGoogle Scholar
  3. Barsalou L (2008) Grounded cognition. Annu Rev Psychol 59:617–645PubMedCrossRefGoogle Scholar
  4. Blanchette I, Dunbar K (2002) Representational change and analogy: how analogical inferences alter target representations. J Exp Psychol Learn Mem Cogn 28:672–685PubMedCrossRefGoogle Scholar
  5. Bohr N (1913) On the constitution of atoms and molecules. Philos Mag 26:1–25Google Scholar
  6. Brill B, Dietrich G, Foucart J, Fuwa K, Hirata S (2009) Tool use as a way to assess cognition: how do captive chimpanzees handle the weight of the hammer when cracking a nut? Anim Cogn 12:217–235CrossRefGoogle Scholar
  7. Bubic A, von Cramon DY, Schubotz RI (2010) Prediction, cognition and the brain. Front Psychol: Hum Neurosci 4:25. doi: 10.3389/fnhum.2010.00025 Google Scholar
  8. Buckner R, Andrews-Hanna J, Schacter D (2008) The brain’s default network: anatomy, function, and relevance to disease. Ann N Y Acad Sci 1124:1–38PubMedCrossRefGoogle Scholar
  9. Bunge SA, Wendelken C, Badre D, Wagner AD (2005) Analogical reasoning and prefrontal cortex: evidence for separate retrieval and integration mechanisms. Cereb Cortex 5:239–249Google Scholar
  10. Burgess PW, Simons J, Dumontheil I, Gilbert S (2007) The gateway hypothesis of rostral prefrontal cortex (area 10) function. In: Duncan J, Phillips L, McLeod P (eds) Measuring the mind: speed, control, and age. Oxford University Press, Oxford, pp 217–248Google Scholar
  11. Butz MV, Sigaud O, Gérard P (2003) Anticipatory behavior in adaptive learning. Springer, BerlinCrossRefGoogle Scholar
  12. Cangelosi A, Metta G, Sagerer G, Nolfi S, Nehaniv C, Fischer K, Tani J, Belpaeme T, Sandini G, Nori F, Fadiga L, Wrede B, Rohlfing K, Tuci E, Dautenhahn K, Saunders J, Zeschel A (2010) Integration of action and language knowledge: a roadmap for developmental robotics. IEEE Trans Autono Mental Dev 2(3):167–195CrossRefGoogle Scholar
  13. Carvalho S, Cunha E, Sousa C, Matsuzawa T (2008) Chaînes opératoires and resource-exploitation strategies in chimpanzee (Pan troglodytes) nut cracking. J Hum Evol 55:148–163PubMedCrossRefGoogle Scholar
  14. Catmur C, Walsh V, Heyes C (2007) Sensorimotor learning configures the human mirror system. Curr Biol 17:1527–1531PubMedCrossRefGoogle Scholar
  15. Catmur C, Gillmeister H, Bird G, Liepelt R, Brass M, Heyes C (2008) Through the looking lass: counter-mirror activation following incompatible sensorimotor learning. Eur J Neurosci 28:1208–1215PubMedCrossRefGoogle Scholar
  16. Catmur C, Wlash V, Heyes C (2009) Associative sequence learning: the role of experience in the development of imitation and the mirror system. Philos Trans R Soc Lond 364:2369–2380CrossRefGoogle Scholar
  17. Cattaneo L, Rizzolatti G (2009) The mirror neuron system. Arch Neurol 66:557–560PubMedCrossRefGoogle Scholar
  18. Cho S, Moody TD, Fernandino F, Mumford JA, Poldrack RA, Cannon TD, Knowlton BJ, Holyoak KJ (2010) Common and dissociable prefrontal loci associated with component mechanisms of analogical reasoning. Cereb Cortex 20:524–533PubMedCrossRefGoogle Scholar
  19. Culham J, Valyear K (2006) Human parietal cortex in action. Curr Opin Neurobiol 16:205–212PubMedCrossRefGoogle Scholar
  20. Day S, Gentner D (2007) Nonintentional analogical inference in text comprehension. Mem Cogn 35(1):39–49CrossRefGoogle Scholar
  21. Day SB, Goldstone RL (2011) Analogical transfer from a simulated physical system. J Exp Psychol Learn Mem Cogn 37(3):551–567PubMedCrossRefGoogle Scholar
  22. Dietrich E (2000) Analogy and conceptual change, or you can’t step into the same mind twice. In: Dietrich E, Markman A (eds) Cognitive dynamics: conceptual change in humans and machines. Lawrence Erlbaum, Mahwah, pp 265–294Google Scholar
  23. Dietrich ES (2010) Analogical insight: toward unifying categorization and analogy. Cogn Process 11:331–345PubMedCrossRefGoogle Scholar
  24. Dreher J-C, Koechlin E, Tierney M, Grafman J (2008) Damage to the fronto-polar cortex is associated with impaired multitasking. PLOS One 3(9):e3227PubMedCrossRefGoogle Scholar
  25. Engel A, Burke M, Fiehler K, Bien S, Rosler F (2007) How moving objects become animated: the human mirror system assimilates non-biological movement patterns. Soc Neurosci 3:368–387CrossRefGoogle Scholar
  26. Falkenhainer B, Forbus KD, Gentner D (1989) The structure mapping engine: algorithm and examples. Artif Intell 41:1–63CrossRefGoogle Scholar
  27. Feist GJ, Gorman ME (1998) The psychology of science: review and integration of a nascent discipline. Rev Gen Psychol 2(1):3–47CrossRefGoogle Scholar
  28. Fields C (2011a) Implementation of structure-mapping inference by event-file binding and action planning: a model of tool-improvisation analogies. Psychol Res 75:129–142PubMedCrossRefGoogle Scholar
  29. Fields C (2011b) Trajectory recognition as the basis for object individuation: a functional model of object-file instantiation and object-token encoding. Front Psychol: Percep Sci 2:49. doi: 10.3389/fpsyg.2011.00049
  30. Fodor J (1983) The modularity of mind. MIT Press, CambridgeGoogle Scholar
  31. Fodor J (2000) The mind doesn’t work that way: the scope and limits of computational psychology. MIT Press, CambridgeGoogle Scholar
  32. Forbus KD, Gentner D, Law K (1994) MAC/FAC: a model of similarity-based retrieval. Cogn Sci 19:141–205Google Scholar
  33. Gallese V, Lakoff G (2005) The brain’s concepts: the role of sensory-motor systems in conceptual knowledge. Cogn Neuropsychol 22:455–479PubMedCrossRefGoogle Scholar
  34. Gentner D (1983) Structure-mapping: a theoretical framework for analogy. Cogn Sci 7:155–170CrossRefGoogle Scholar
  35. Gentner D (2003) Why we’re so smart. In: Gentner D, Goldin-Meadow S (eds) Language and mind: advances in the study of language and thought. MIT Press, Cambridge, pp 195–235Google Scholar
  36. Gentner D (2005) The development of relational category knowledge. In: Gershkoff-Stowe L, Rakison D (eds) Building object categories in developmental time. Erlbaum, Hillsdale, pp 245–275Google Scholar
  37. Gentner D, Christie S (2008) Relational language supports relational cognition in humans, apes (Comment on Penn et al. 2008). Behav Brain Sci 31(2):136–137CrossRefGoogle Scholar
  38. Gentner D, Wolff P (2000) Metaphor and knowledge change. In: Dietrich E, Markman A (eds) Cognitive dynamics: conceptual change in humans and machines. LEA, Mahwah, pp 295–342Google Scholar
  39. Gentner D, Brem S, Ferguson R, Markman A, Levidow B, Wolff P, Forbus K (1997) Analogical reasoning and conceptual change: a case study of Johannes Kepler. J Learn Sci 6(1):3–40CrossRefGoogle Scholar
  40. Gilbert S, Frith C, Burgess P (2005) Involvement of rostral prefrontal cortex in selection between stimulus-oriented and stimulus-independent thought. Eur J Neurosci 21:1423–1431PubMedCrossRefGoogle Scholar
  41. Green A, Fugelsang J, Kraemer D, Shamosh N, Dunbar K (2006) Frontopolar cortex mediates abstract integration in analogy. Brain Res 1096:125–137PubMedCrossRefGoogle Scholar
  42. Hegarty M (2004) Mechanical reasoning by mental simulation. Trends Cogn Sci 8(6):280–285PubMedCrossRefGoogle Scholar
  43. Heyes C (2010) Where do mirror neurons come from? Neurosci Biobehav Rev 34(4):575–583PubMedCrossRefGoogle Scholar
  44. Holyoak K (2005) Analogy. In: Holyoak K, Morrison R (eds) The Cambridge handbook of thinking and reasoning. Cambridge University Press, Cambridge, pp 117–142Google Scholar
  45. Holyoak KJ, Thagard P (1995) Mental leaps. MIT Press, CambridgeGoogle Scholar
  46. Hommel B (2004) Event files: feature binding in and across perception and action. Trends Cogn Sci 8(11):494–500PubMedCrossRefGoogle Scholar
  47. Hommel B (2007) Feature integration across perception and action: event files affect response choice. Psychol Res 71:42–63PubMedCrossRefGoogle Scholar
  48. Hummel JE, Holyoak KJ (2003) A symbolic-connectionist theory of relational inference and generalization. Psychol Rev 110:220–264PubMedCrossRefGoogle Scholar
  49. Johnson-Frey S, Newman-Norland R, Grafton S (2005) A distributed left-hemisphere network active during planning of everyday tool use skills. Cereb Cortex 15:681–695PubMedCrossRefGoogle Scholar
  50. Jung-Beeman M, Bowden EM, Haberman J, Frymiare JL, Arumbel-Liu S, Greenblatt R, Reber PJ, Kounios J (2004) Neural activity when people solve verbal problems with insight. PLOS Biol 2(4):0500–0510CrossRefGoogle Scholar
  51. Keizer AW, Nieuwenhuis S, Colzato LS, Teeuwisse W, Rombouts SARB, Hommel B (2008) When moving faces activate the house area: an fMRI study of object-file retrieval. Behav Brain Functions 4:50. doi: 10.1186/1744-9081-4-50 CrossRefGoogle Scholar
  52. Knowlton BJ, Holyoak KJ (2009) Prefrontal substrate of human relational reasoning. In: Gazzaniga MS (ed) The cognitive neurosciences. MIT Press, Cambridge, pp 1005–1017Google Scholar
  53. Kosslyn SM, Thompson WL, Ganis G (2006) The case for mental imagery. Oxford University Press, New YorkCrossRefGoogle Scholar
  54. Kounios J, Beeman M (2009) The “Aha!” moment: the cognitive neuroscience of insight. Curr Dir Psychol Sci 18(4):210–216CrossRefGoogle Scholar
  55. Kounios J, Frymiare JL, Bowden EM, Fleck JI, Subramaniam K, Parrish TB, Jung-Beeman M (2006) The prepared mind: neural activity prior to problem presentation predicts subsequent solution by sudden insight. Psychol Sci 17:882–890PubMedCrossRefGoogle Scholar
  56. Lakoff G, Johnson M (1999) Philosophy in the flesh: the embodied mind and its challenge to western thought. Basic Books, New YorkGoogle Scholar
  57. Lasry N, Aulls M (2007) The effects of multiple internal representations on context rich instruction. Am J Phys 75:1030–1037CrossRefGoogle Scholar
  58. Leech R, Mareshal D, Cooper R (2008) Analogy as relational priming: a developmental and computational perspective on the origins of a complex cognitive skill. Behav Brain Sci 31:357–378PubMedGoogle Scholar
  59. Mahon BZ, Caramazza A (2009) Concepts and categories: a cognitive neuropsychological perspective. Annu Rev Psychol 60:27–51PubMedCrossRefGoogle Scholar
  60. Markman A, Gentner D (2001) Thinking. Annu Rev Psychol 52:223–247PubMedCrossRefGoogle Scholar
  61. Martin A (2007) The representation of object concepts in the brain. Annu Rev Psychol 58:25–45PubMedCrossRefGoogle Scholar
  62. Mehra J, Rechenberg H (1982) The Historical Development of Quantum Theory, vol 1: The Quantum Theory of Planck, Einstein, Bohr and Sommerfeld: its foundation and the rise of its difficulties 1900–1925. Springer, Berlin, p 372Google Scholar
  63. Morrison R, Krawczyk D, Holyoak K, Hummel J, Chow T, Miller B, Knowlton BJ (2005) A neurocomputational model of analogical reasoning and its breakdown in frontotemporal lobar degeneration. J Cogn Neurosci 16(2):260–271CrossRefGoogle Scholar
  64. Moulton ST, Kosslyn SM (2009) Imagining predictions: mental imagery as mental emulation. Philosop Trans R Soc B 364:1273–1280CrossRefGoogle Scholar
  65. Penn D, Povinelli D (2007) Causal cognition in human and non-human animals: a comparative, critical review. Annu Rev Psychol 58:97–118PubMedCrossRefGoogle Scholar
  66. Penn D, Holyoak K, Povinelli D (2008) Darwin’s mistake: explaining the discontinuity between human and nonhuman minds. Behav Brain Sci 31:109–178PubMedGoogle Scholar
  67. Pinker S (1997) How the mind works. Norton, New YorkGoogle Scholar
  68. Podolefsky NS, Finkelstein ND (2006) Use of analogy in learning physics: the role of representation. Phys Rev Special Topics Phys Educ Res 2:020101CrossRefGoogle Scholar
  69. Pruetz JD, Bertolani P (2007) Savanna chimpanzees, Pan troglodytes versus, hunt with tools. Curr Biol 17:1–6CrossRefGoogle Scholar
  70. Puce A, Perrett D (2003) Electrophysiology and brain imaging of biological motion. Philos Trans R Soc Lond B 358:435–445CrossRefGoogle Scholar
  71. Pylyshyn ZW (1986) Computation and cognition: toward a foundation for cognitive science. MIT/Bradford, CambridgeGoogle Scholar
  72. Randall L (2005) Warped passages: unraveling the mysteries of the universe’s hidden dimensions. Harper Perennial, New YorkGoogle Scholar
  73. Rizzolatti G, Craighero L (2004) The mirror-neuron system. Ann Rev Neurosci 27:169–192PubMedCrossRefGoogle Scholar
  74. Rutherford E (1911) The scattering of alpha and beta particles by matter and the structure of the atom. Philos Mag 21:669–688Google Scholar
  75. Sandkuhler S, Bhattacharya J (2008) Deconstructing insight: EEG correlates of insightful problem solving. PLOS One 3(1):e1459PubMedCrossRefGoogle Scholar
  76. Schubotz RI (2007) Prediction of external events with our motor system: towards a new framework. Trends Cogn Sci 11(5):211–218PubMedCrossRefGoogle Scholar
  77. Schubotz R, van Cramon DY (2004) Sequences of abstract nonbiological stimuli share ventral premotor cortex with action observations and imagery. J Neurosci 24(24):5467–5474PubMedCrossRefGoogle Scholar
  78. Spapé MM, Hommel B (2010) Actions travel with their objects: evidence for dynamic event files. Psychol Res 74:50–58PubMedCrossRefGoogle Scholar
  79. Suddendorf T, Coraballis MC (2007) The evolution of foresight: what is mental time travel, and is it unique to humans? Behav Brain Sci 30:299–351PubMedGoogle Scholar
  80. Visalberghi E, Addessi E, Truppa V, Spagnoletti N, Ottoni E, Izar P, Fragaszy D (2009) Selection of effective stone tools by wild bearded capuchin monkeys. Curr Biol 19:1–5CrossRefGoogle Scholar
  81. Waltz JA, Lau A, Grewai SK, Holyoak KJ (2000) The role of working memory in analogical mapping. Mem Cogn 28:1205–1212CrossRefGoogle Scholar
  82. Weir A, Kacelnik A (2006) A new Caledonian crow (Corvus moneduloides) creatively re-designs tools by bending or unbending aluminum strips. Anim Cogn 9(4):317–334PubMedCrossRefGoogle Scholar
  83. Wendelken C, Nakhabenko D, Donohue SE, Carter CS, Bunge SA (2008) “Brain is to thought as stomach is to?” Investigating the role of rostrolateral prefrontal cortex in relational reasoning. J Cogn Neurosci 20(4):682–693PubMedCrossRefGoogle Scholar
  84. White PA (2009) Perception of forces exerted by objects in collision events. Psychol Rev 116:580–601PubMedCrossRefGoogle Scholar
  85. Wolff P (2007) Representing causation. J Exp Psychol Gen 136:82–111PubMedCrossRefGoogle Scholar
  86. Wolff P (2008) Dynamics and the perception of causal events. In: Shipley T, Zacks J (eds) Understanding events: how humans see, represent, and act on events. Oxford University Press, Oxford, pp 555–587Google Scholar

Copyright information

© Marta Olivetti Belardinelli and Springer-Verlag 2012

Authors and Affiliations

  1. 1.Apdo. 363-4013AtenasCosta Rica

Personalised recommendations