Cognitive Processing

, Volume 13, Issue 2, pp 111–131 | Cite as

Toward operational architectonics of consciousness: basic evidence from patients with severe cerebral injuries

  • Andrew A. FingelkurtsEmail author
  • Alexander A. Fingelkurts
  • Sergio Bagnato
  • Cristina Boccagni
  • Giuseppe Galardi
Research Report


Although several studies propose that the integrity of neuronal assemblies may underlie a phenomenon referred to as awareness, none of the known studies have explicitly investigated dynamics and functional interactions among neuronal assemblies as a function of consciousness expression. In order to address this question, EEG operational architectonics analysis (Fingelkurts and Fingelkurts 2001, 2008) was conducted in patients in minimally conscious (MCS) and vegetative states (VS) to study the dynamics of neuronal assemblies and operational synchrony among them as a function of consciousness expression. We found that in minimally conscious patients and especially in vegetative patients neuronal assemblies got smaller, their life span shortened and they became highly unstable. Furthermore, we demonstrated that the extent/volume and strength of operational synchrony among neuronal assemblies was smallest or even absent in VS patients, intermediate in MCS patients, and highest in healthy fully conscious subjects. All findings were similarly observed in EEG alpha as well as beta1 and beta2 frequency oscillations. The presented results support the basic tenets of operational architectonics theory of brain–mind functioning and suggest that EEG operational architectonics analysis may provide an objective and accurate means of assessing signs of (un)consciousness in patients with severe brain injuries. Therefore, this methodological approach may complement the existing “gold standard” of behavioral assessment of this population of challenging patients and inform the diagnostic and treatment decision-making processes.


EEG alpha and beta rhythms Brain operations Neuronal assemblies Minimally conscious state (MCS) Vegetative state (VS) Metastability Neurophysiological pattern Synchronization Functional connectivity (Un)consciousness 



The authors thank Caterina Prestandrea (neurophysiology technician), who made all the EEG recordings and Carlos Neves (Computer Science specialist) for programming, technical, and IT support. Special thanks for English editing to Dmitry Skarin. This work was partially supported by BM-Science Centre, Finland. Authors declare no conflict of interests.


  1. Aertsen AMHJ, Gerstein GL, Habib MK, Palm G, Adrian ED (1989) Dynamics of neuronal ring correlation: modulation of “effective connectivity”. J Neurophysiol 61:900–917PubMedGoogle Scholar
  2. Aftanas LI, Pavlov SV, Reva NV, Varlamov AA (2003) Trait anxiety impact on the EEG theta band power changes during appraisal of threatening and pleasant visual stimuli. Int J Psychophysiol 50:205–212PubMedCrossRefGoogle Scholar
  3. Alkire MT, Haier RJ, Fallon JH (2000) Toward a unified theory of narcosis: brain imaging evidence for a thalamocortical switch as the neurophysiologic basis of anesthetic-induced unconsciousness. Conscious Cogn 9:370–386PubMedCrossRefGoogle Scholar
  4. ANA Committee on Ethical Affairs (1993) Persistent vegetative state: report of the American neurological association committee on ethical affairs. Ann Neurol 33:386–390CrossRefGoogle Scholar
  5. Andrews K (2004) Medical decision making in the vegetative state: withdrawal of nutrition and hydration. Neuro Rehabil 19:299–304Google Scholar
  6. Andrews K, Murphy L, Munday R, Littlewood C (1996) Misdiagnosis of the vegetative state: retrospective study in a rehabilitation unit. BMJ 313:13–16PubMedCrossRefGoogle Scholar
  7. Baars BJ (1988) A cognitive theory of consciousness. Cambridge University Press, CambridgeGoogle Scholar
  8. Baars BJ (2002) The conscious access hypothesis: origins and recent evidence. Trends Cogn Sci 6:47–52PubMedCrossRefGoogle Scholar
  9. Babiloni C, Vecchio F, Miriello M, Romani GL, Rossini PM (2006) Visuo-spatial consciousness and parieto-occipital areas: a high-resolution EEG study. Cereb Cortex 16:37–46PubMedCrossRefGoogle Scholar
  10. Babiloni C, Ferri R, Binetti G, Vecchio F, Frisoni GB, Lanuzza B et al (2009) Directionality of EEG synchronization in Alzheimer’s disease subjects. Neurobiol Aging 30:93–102PubMedCrossRefGoogle Scholar
  11. Bagnato S, Boccagni C, Prestandrea C, Sant’Angelo A, Castiglione A, Galardi G (2010) Prognostic value of standard EEG in traumatic and non-traumatic disorders of consciousness following coma. Clin Neurophysiol 121:274–280PubMedCrossRefGoogle Scholar
  12. Ball T, Demandt E, Mutschler I, Neitzel E, Mehring C, Vogt K, Aertsen A, Schulze-Bonhage A (2008) Movement related activity in the high gamma range of the human EEG. NeuroImage 41:302–310PubMedCrossRefGoogle Scholar
  13. Başar E (2006) The theory of the whole-brain-work. Int J Psychophysiol 60:133–138PubMedCrossRefGoogle Scholar
  14. Başar E, Güntekin B (2009) Darwin’s evolution theory, brain oscillations, and complex brain function in a new “Cartesian view”. Int J Psychophysiol 71:2–8PubMedCrossRefGoogle Scholar
  15. Başar EC, Başar EC, Karakas S, Schurmann M (2000) Brain oscillations in perception and memory. Int J Psychophysiol 35:95–124PubMedCrossRefGoogle Scholar
  16. Başar E, Başar-Eroglu C, Karakas S, Schurmann M (2001) Gamma, alpha, delta, and theta oscillations govern cognitive processes. Int J Psychophysiol 39:241–248PubMedCrossRefGoogle Scholar
  17. Bernat JL (2006) Chronic disorders of consciousness. Lancet 367(9517):1181–1192PubMedCrossRefGoogle Scholar
  18. Blumenfeld H (2008) Epilepsy and consciousness. In: Laureys S, Tononi G (eds) The neurology of consciousness. Elsevier Academic Press, Oxford, pp 247–260Google Scholar
  19. Boccagni C, Bagnato S, Sant’Angelo A, Prestandrea C, Galardi G (2011) Usefulness of standard EEG in predicting the outcome of patients with disorders of consciousness following anoxic coma. J Clin Neurophysiol (in press)Google Scholar
  20. Boly M, Faymonville ME, Peigneux P, Lambermont B, Damas P, Del Fiore G et al (2004) Auditory processing in severely brain injured patients: differences between the minimally conscious state and the persistent vegetative state. Arch Neurol 61:233–238PubMedCrossRefGoogle Scholar
  21. Brazdil M, Rektor I, Daniel P, Dufek M, Jurak P (2001) Intracerebral event-related potentials to subthreshold target stimuli. Clin Neurophysiol 112:650–661PubMedCrossRefGoogle Scholar
  22. Bressler SL (2002) Understanding cognition through large-scale cortical networks. Curr Dir Psychol Sci 11:58–61CrossRefGoogle Scholar
  23. Bressler SL, Kelso JAS (2001) Cortical coordination dynamics and cognition. Trends Cogn Sci 5:26–36PubMedCrossRefGoogle Scholar
  24. Bressler SL, McIntosh AR (2007) The role of neural context in large-scale neurocognitive network operations. In: Jirsa VK, McIntosh AR (eds) Handbook of brain connectivity. Springer, pp, pp 403–419CrossRefGoogle Scholar
  25. Bressler SL, Tognoli E (2006) Operational principles of neurocognitive networks. Int J Psychophysiol 60:139–148PubMedCrossRefGoogle Scholar
  26. Brett M, Leff AP, Rorden C, Ashburner J (2001) Spatial normalization of brain images with focal lesions uding cost function masking. NeuroImage 14:486–500PubMedCrossRefGoogle Scholar
  27. Buzsáki G (2004) Large-scale recording of neuronal ensembles. Nat Neurosci 7:446–451PubMedCrossRefGoogle Scholar
  28. Buzsáki G (2006) Rhythms of the brain. Oxford University Press, OxfordCrossRefGoogle Scholar
  29. Buzsáki G, Draguhn A (2004) Neuronal oscillations in cortical networks. Science 304:1926–1929PubMedCrossRefGoogle Scholar
  30. Cauda F, Micon BM, Sacco K, Duca S, D’Agata F, Geminiani G, Canavero S (2009) Disrupted intrinsic functional connectivity in the vegetative state. J Neurol Neurosurg Psychiatry 80:429–431PubMedCrossRefGoogle Scholar
  31. Cavanna AE, Monaco F (2009) Brain mechanisms of altered conscious states during epileptic seizures. Nat Rev Neurol 5:267–276PubMedCrossRefGoogle Scholar
  32. Childs NL, Mercer WN, Childs HW (1993) Accuracy of diagnosis of persistent vegetative state. Neurology 43:1465–1467PubMedGoogle Scholar
  33. Coleman MR, Rodd JM, Davis MH, Johnsrude IS, Menon DK et al (2007) Do vegetative patients retain aspects of language comprehension? Evidence from fMRI. Brain 130:2494–2507PubMedCrossRefGoogle Scholar
  34. Cologan V, Schabus M, Ledoux D, Moonen G, Maquet P, Laureys S (2010) Sleep in disorders of consciousness. Sleep Med Rev 14:97–105PubMedCrossRefGoogle Scholar
  35. Davey MP, Victor JD, Schiff ND (2000) Power spectra and coherence in the EEG of a vegetative patient with severe asymmetric brain damage. Clin Neurophysiol 111:1949–1954PubMedCrossRefGoogle Scholar
  36. de Jong B, Willemsen AT, Paans AM (1997) Regional cerebral blood flow changes related to affective speech presentation in persistent vegetative state. Clin Neurol Neurosurg 99:213–216PubMedCrossRefGoogle Scholar
  37. Dehaene S, Changeux J-P, Naccache L, Sackur J, Sergent C (2006) Conscious, preconscious, and subliminal processing: a testable taxonomy. Trends Cogn Sci 10:204–211PubMedCrossRefGoogle Scholar
  38. Edelman GM, Tononi G (2000) A universe of consciousness: how matter becomes imagination. Basic Books, New YorkGoogle Scholar
  39. Engel AK, Singer W (2001) Temporal binding and the neural correlates of sensory awareness. Trends Cogn Sci 5:16–25PubMedCrossRefGoogle Scholar
  40. Faran S, Vatine JJ, Lazary A, Ohry F, Birbaumer N, Kotchoubey B (2006) Late recovery from permanent traumatic vegetative state heralded by event-related potentials. J Neurol Neurosurg Psychiatry 77:998–1000PubMedCrossRefGoogle Scholar
  41. Faulkner EA (1969) Introduction to the theory of linear systems. Chapman & HallGoogle Scholar
  42. Feinberg TE (2000) The nested hierarchy of consciousness: a neurobiological solution to the problem of mental unity. Neurocase 6:75–81CrossRefGoogle Scholar
  43. Ferree TC, Luu P, Russell GS, Tucker DM (2001) Scalp electrode impedance, infection risk, and EEG data quality. Clin Neurophysiol 112:536–544PubMedCrossRefGoogle Scholar
  44. Fingelkurts AnA (1998) Time-spatial organization of the human EEG segmental structure. PhD dissertation. MSU press, Moscow, p 401 (in Russian)Google Scholar
  45. Fingelkurts AnA, Fingelkurts AlA (2001) Operational architectonics of the human brain biopotential field: towards solving the mind-brain problem. Brain Mind 2:261–296Google Scholar
  46. Fingelkurts AnA, Fingelkurts AlA (2003) Operational architectonics of perception and cognition: a principle of self-organized metastable brain states (invited full-text contribution). VI Parmenides workshop, Institute of Medical Psychology, Elba, Italy, 5–10, AprilGoogle Scholar
  47. Fingelkurts AnA, Fingelkurts AlA (2004) Making complexity simpler: multivariability and metastability in the Brain. Int J Neurosci 114:843–862Google Scholar
  48. Fingelkurts AnA, Fingelkurts AlA (2005) Mapping of the brain operational architectonics. In: Chen FJ (ed) Focus on brain mapping research, Chap 2. Nova Science Publishers Inc, Commack, pp 59–98Google Scholar
  49. Fingelkurts AnA, Fingelkurts AlA (2006) Timing in cognition and EEG brain dynamics: discreteness versus continuity. Cogn Process 7:135–162Google Scholar
  50. Fingelkurts AnA, Fingelkurts AlA (2008) Brain-mind operational architectonics imaging: technical and methodological aspects. Open Neuroimag J 2:73–93Google Scholar
  51. Fingelkurts AnA, Fingelkurts AlA (2010a) Alpha rhythm operational architectonics in the continuum of normal and pathological brain states: current state of research. Int J Psychophysiol 76:93–106Google Scholar
  52. Fingelkurts AlA, Fingelkurts AnA (2010b) Short-term EEG spectral pattern as a single event in EEG phenomenology. Open Neuroimag J 4:130–156Google Scholar
  53. Fingelkurts AnA, Fingelkurts AlA (2011) Persistent operational synchrony within brain default-mode network and self-processing operations in healthy subjects. Brain Cog 75:79–90Google Scholar
  54. Fingelkurts AnA, Fingelkurts AlA, Krause CM, Möttönen R, Sams M (2003) Cortical operational synchrony during audio-visual speech integration. Brain Lang 85:297–312Google Scholar
  55. Fingelkurts AnA, Fingelkurts AlA, Kivisaari R, Pekkonen E, Ilmoniemi RJ, Kähkönen SA (2004) Local and remote functional connectivity of neocortex under the inhibition influence. NeuroImage 22:1390–1406Google Scholar
  56. Fingelkurts AlA, Fingelkurts AnA, Krause CM (2007) Composition of brain oscillations and their functions in the maintenance of auditory, visual and audio-visual speech percepts: an exploratory study. Cogn Process 8:183–199Google Scholar
  57. Fingelkurts AnA, Fingelkurts AlA, Neves CFH (2009) Phenomenological architecture of a mind and operational architectonics of the brain: the unified metastable continuum. J New Math Natural Comput 5:221–244Google Scholar
  58. Fingelkurts AnA, Fingelkurts AlA, Neves CFH (2010) Natural world physical, brain operational, and mind phenomenal space–time. Phys Life Rev 7:195–249Google Scholar
  59. Flohr H (1995) An information processing theory of anaesthesia. Neuropsychologia 9:1169–1180CrossRefGoogle Scholar
  60. Freeman WJ (1975) Mass action in the nervous system. Academic Press, New YorkGoogle Scholar
  61. Freeman WJ (1992) Tutorial on neurobiology: from single neurons to brain chaos. Int J Bifurcat Chaos 2:451–482CrossRefGoogle Scholar
  62. Freeman WJ (2003) The wave packet: an action potential for the 21st century. J Integr Neurosci 2:3–30PubMedCrossRefGoogle Scholar
  63. Freeman WJ (2007) Indirect biological measures of consciousness from field studies of brains as dynamical systems. Neural Netw 20:1021–1031PubMedCrossRefGoogle Scholar
  64. Gaztelu JM, Garcia-Austt E, Bullock TH (1991) Electrocorticograms of hippocampal and dorsal cortex of two reptiles: comparison with possible mammalian homologs. Brain Behav Evol 37:144–160PubMedCrossRefGoogle Scholar
  65. Giacino JT, Ashwal S, Childs N, Cranford R, Jennett B, Katz DI, Kelly JP et al (2002) The minimally conscious state. Definition and diagnostic criteria. Neurology 58:349–353PubMedGoogle Scholar
  66. Giacino JT, Kalmar K, Whyte J (2004) The JFK coma recovery scale-revised: measurement characteristics and diagnostic utility. Arch Phys Med Rehabil 85:2020–2029PubMedCrossRefGoogle Scholar
  67. Goldfine AM, Kobylarz EJ, Hudson AE, Giacino JT, Hirsch J, Schiff ND (2005) Quantitative electroencephalography in a patient emerged from the minimally conscious state after 19 years. Program no 16.10, abstract viewer/itinerary planner, Society for NeuroscienceGoogle Scholar
  68. Gouvier WD, Blanton PD, LaPorte KK, Nepomuceno C (1987) Reliability and validity of the disability rating scale and the levels of cognitive functioning scale in monitoring recovery from severe head injury. Arch Phys Med Rehabil 68:94–97PubMedGoogle Scholar
  69. Hagemann D, Naumann E, Thayer JF (2001) The quest for the EEG reference revisited: a glance from brain asymmetry research. Psychophysiology 38:847–857PubMedCrossRefGoogle Scholar
  70. Hari R, Salmelin R (1997) Human cortical oscillations: a neuromagnetic view through the skull. Trends Neurosci 20:44–49PubMedCrossRefGoogle Scholar
  71. Heath G (1972) Pleasure and brain activity in men. J Nerv Ment Dis 154:3–18PubMedCrossRefGoogle Scholar
  72. Hipp JF, Engel AK, Siegel M (2011) Oscillatory synchronization in large-scale cortical networks predicts perception. Neuron 69:387–396PubMedCrossRefGoogle Scholar
  73. Hoffman LD, Polich J (1998) EEG, ERPs and food consumption. Biol Psychol 48:139–151PubMedCrossRefGoogle Scholar
  74. Holzinger B, LaBerge S, Levitan L (2006) Psychophysiological correlates of lucid dreaming. Dreaming 16:88–95CrossRefGoogle Scholar
  75. Hudetz A (2010) Cortical disintegration mechanism of anesthetic-induced unconsciousness. In: Hudetz A, Pearce R (eds) Suppressing the mind: contemporary clinical neuroscience. Humana Press, pp, pp 99–125Google Scholar
  76. Ingber L (1995) Statistical mechanics of multiple scales of neocortical interactions. In: Nunez PL (ed) Neocortical dynamics and human EEG rhythms. Oxford University Press, New York, pp 628–681Google Scholar
  77. Jennett B, Bond M (1975) Assessment of outcome after severe brain damage. Lancet 1:480–484PubMedCrossRefGoogle Scholar
  78. Jennett B, Snoek J, Bond MR, Brooks N (1981) Disability after severe brain injury: observations on the use of the Glasgow outcome scale. J Neurol Neurosurg Psychiatry 44:285–293PubMedCrossRefGoogle Scholar
  79. Jennett B, Adams JH, Murray LS, Graham DI (2001) Neuropathology in vegetative and severely disabled patients after head injury. Neurology 56:486–490PubMedGoogle Scholar
  80. John ER (2001) A field theory of consciousness. Conscious Cogn 9–10:184–213CrossRefGoogle Scholar
  81. John ER, Prichep LS (2005) The anesthetic cascade: a theory of how anesthesia suppresses consciousness. Anesthesiology 102:447–471PubMedCrossRefGoogle Scholar
  82. John ER, Easton P, Isenhart R (1997) Consciousness and cognition may be mediated by multiple independent coherent ensembles. Conscious Cogn 6:3–39PubMedCrossRefGoogle Scholar
  83. Juengling FD, Kassubek J, Huppertz HJ, Krause T, Els T (2005) Separating functional and structural damage in persistent vegetative state using combined voxel-based analysis of 3-D MRI and FDG-PET. J Neurol Sci 228:179–184PubMedCrossRefGoogle Scholar
  84. Kaiser DA, Sterman MB (1994) Periodicity of standardized EEG spectral measures across the waking day. Presented at the 7th annual summer sleep workshop multi-site training program for basic sleep research. Lake Arrowhead, CaliforniaGoogle Scholar
  85. Kaplan AYA, Borisov SV (2003) Dynamic properties of segmental characteristics of EEG alpha activity in rest conditions and during cognitive load. Zh Vyssh Nerv Deiat im IP Pavlova (Journal of High Nervous Activity by IP Pavlov) 53:22–32 (in Russian)Google Scholar
  86. Kaplan AYA, Fingelkurts AnA, Fingelkurts AlA, Borisov SV, Darkhovsky BS (2005) Nonstationary nature of the brain activity as revealed by EEG/MEG: methodological, practical and conceptual challenges. Signal Process 85:2190–2212CrossRefGoogle Scholar
  87. Kelso JAS, Engstrøm D (2006) The complementary nature. MIT Press, CambridgeGoogle Scholar
  88. Kelso JAS, Tognoli E (2007) Toward a complementary neuroscience: metastable coordination dynamics of the brain. In: Kozma R, Perlovsky L (eds) Neurodinamics of higher-level cognition and consciousness. Springer, Heidelberg, pp 39–59CrossRefGoogle Scholar
  89. Kihlstrom JF (1987) The cognitive unconscious. Science 237:1445–1452PubMedCrossRefGoogle Scholar
  90. Kinney HC, Samuels MA (1994) Neuropathology of the persistent vegetative state: a review. J Neuropathol Exp Neurol 53:548–558PubMedCrossRefGoogle Scholar
  91. Kinsbourne M (2005) A continuum of self-consciousness that emerges in phylogeny and ontogeny. In: Terrace HS, Metcalfe J (eds) The missing link in cognition: origins of self-reflective consciousness. Oxford University Press, New York, pp 142–156Google Scholar
  92. Klimesch W (1996) Memory processes, brain oscillations and EEG synchronization. Int J Psychophysiol 24:61–100PubMedCrossRefGoogle Scholar
  93. Klimesch W (1999) EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis. Brain Res Rev 29:169–195PubMedCrossRefGoogle Scholar
  94. Klimesch W, Schack B, Sauseng P (2005) The functional significance of theta and upper alpha oscillations. Exp Psychol 52:99–108PubMedGoogle Scholar
  95. Knyazev GG (2006) EEG correlates of personality types. Neth J Psychol 62:78–87CrossRefGoogle Scholar
  96. Knyazev GG (2007) Motivation, emotion, and their inhibitory control mirrored in brain oscillations. Neurosci Biobehav Rev 31:377–395PubMedCrossRefGoogle Scholar
  97. Knyazev GG, Slobodskaya HR (2003) Personality trait of behavioral inhibition is associated with oscillatory systems reciprocal relationships. Int J Psychophysiol 48:247–261PubMedCrossRefGoogle Scholar
  98. Knyazeva MG, Fornari E, Meuli R, Maeder P (2006) Interhemispheric integration at different spatial scales: the evidence from EEG coherence and fMRI. J Neurophysiol 96:259–275PubMedCrossRefGoogle Scholar
  99. Kobylarz EJ, Schiff ND (2004) Functional imaging of severely brain-injured patients. Progress, challenges, and limitations. Arch Neurol 61:1357–1360PubMedCrossRefGoogle Scholar
  100. Kotchoubey B (2005) Event-related potential measures of consciousness: two equations with three unknowns. In: Laureys S (ed) Progress in brain research, vol 150. Elsevier BV, pp 427–444Google Scholar
  101. Kotchoubey B, Lang S (2011) Intuitive versus theory-based assessment of consciousness: the problem of low-level consciousness. Clin Neurophysiol 122:430–432PubMedCrossRefGoogle Scholar
  102. Kotchoubey B, Lang S, Bostanov V, Birbaumer N (2002) Is there a mind? Electrophysiology of unconscious patients. News Physiol Sci 17:38–42PubMedGoogle Scholar
  103. Lamme VA (2006) Towards a true neural stance on consciousness. Trends Cogn Sci 10:494–501PubMedCrossRefGoogle Scholar
  104. Laufs H, Lengler U, Hamandi K, Kleinschmidt A, Krakow K (2006) Linking generalized spike-and-wave discharges and resting state brain activity by using EEG/fMRI in a patient with absence seizures. Epilepsia 47:444–448PubMedCrossRefGoogle Scholar
  105. Laureys S (2005) The neural correlate of (un)awareness: lessons from the vegetative state. Trends Cogn Sci 9:556–559PubMedCrossRefGoogle Scholar
  106. Laureys S, Goldman S, Phillips C, Van Bogaert P, Aerts J, Luxen A et al (1999) Impaired effective cortical connectivity in vegetative state: preliminary investigation using PET. NeuroImage 9:377–382PubMedCrossRefGoogle Scholar
  107. Laureys S, Faymonville ME, Luxen A, Lamy M, Franck G, Maquet P (2000) Restoration of thalamocortical connectivity after recovery from persistent vegetative state. Lancet 355:1790–1791PubMedCrossRefGoogle Scholar
  108. Laureys S, Antoine S, Boly M, Elincx S, Faymonville M-E, Berre J et al (2002) Brain function in the vegetative state. Acta Neurol Belg 102:177–185PubMedGoogle Scholar
  109. Lazarev VV (2006) The relationship of theory and methodology in EEG studies of mental activity. Int J Psychophysiol 62:384–393PubMedCrossRefGoogle Scholar
  110. Le Van Quyen M (2011) The brain web of cross-scale interactions. New Ideas Psychol 29:57–63CrossRefGoogle Scholar
  111. Lehmann D (1984) EEG assessment of brain activity: spatial aspects, segmentation and imaging. Int J Psychophysiol 1:267–276PubMedCrossRefGoogle Scholar
  112. Libet B (2003) Timing of conscious experience: reply to the 2002 commentaries on Libet’s findings. Conscious Cogn 12:321–331PubMedCrossRefGoogle Scholar
  113. Livanov MN (1977) Spatial organization of cerebral processes. Wiley, New YorkGoogle Scholar
  114. Majerus S, Gill-Thwaites H, Andrews K, Laureys S (2005) Behavioral evaluation of consciousness in severe brain damage. Prog Brain Res 150:397–413PubMedCrossRefGoogle Scholar
  115. Mashour GA (2004) Consciousness unbound: toward a paradigm of general anesthesia. Anesthesiology 100:428–433PubMedCrossRefGoogle Scholar
  116. McFadden J (2002) Synchronous firing and its influence on the brain’s electromagnetic field. Evidence for an electromagnetic field theory of consciousness. J Conscious Stud 9:23–50Google Scholar
  117. Metzinger T (2003) Being no one. The self-model theory of subjectivity. MIT Press, CambridgeGoogle Scholar
  118. Metzinger T (2007) The self-model theory of subjectivity (SMT). Scholarpedia 2:4174CrossRefGoogle Scholar
  119. Milner AD, Goodale MA (1995) The visual brain in action. Oxford University Press, OxfordGoogle Scholar
  120. Monti MM, Laureys S, Owen AM (2010) The vegetative state. BMJ 341:c3765PubMedCrossRefGoogle Scholar
  121. Moritz CH, Rowley HA, Haughton VM, Swartz KR, Jones J, Badie B (2001) Functional MR imaging assessment of a non-responsive brain injured patient. Magn Reson Imaging 19:1129–1132PubMedCrossRefGoogle Scholar
  122. Mosovich A, Tallaferro A (1954) Studies on EEG and sex function orgasm. Dis Nerv Syst 15:218–220PubMedGoogle Scholar
  123. Mundy-Castle AC (1957) The electroencephalogram and mental activity. Electroencephalogr Clin Neurophysiol 9:643–655PubMedCrossRefGoogle Scholar
  124. Murthy VN, Fetz EE (1992) Coherent 25–35 Hz oscillations in the sensorimotor cortex of awake behaving monkeys. Proc Natl Acad Sci USA 89:5670–5674PubMedCrossRefGoogle Scholar
  125. Naccache L, Dehaene S (2001) Unconscious semantic priming extends to novel unseen stimuli. Cognition 80:215–229PubMedCrossRefGoogle Scholar
  126. Neumann N, Kotchoubey B (2004) Assessment of cognitive functions in severely paralysed and severely brain-damaged patients: neuropsychological and electrophysiological methods. Brain Res Brain Res Protoc 14:25–36PubMedCrossRefGoogle Scholar
  127. Northoff G, Qin P, Feinberg TE (2011) Brain imaging of the self–Conceptual, anatomical and methodological issues. Conscious Cogn 20:52–63PubMedCrossRefGoogle Scholar
  128. Nunez PL (1995) Neocortical dynamics and human EEG rhythms. Oxford University Press, New YorkGoogle Scholar
  129. Nunez PL (2000) Toward a quantitative description of large-scale neocortical dynamic function and EEG. Behav Brain Sci 23:371–398PubMedCrossRefGoogle Scholar
  130. Overgaard M (2009) How can we know if patients in coma, vegetative state or minimally conscious state are conscious? In: Laureys S et al (eds) Progress in brain research, vol 177. Elsevier BV, Amsterdam, pp 11–19Google Scholar
  131. Owen AM, Coleman MR, Boly M, Davis MH, Laureys S, Pickard JD (2006) Detecting awareness in the vegetative state. Science 313:1402PubMedCrossRefGoogle Scholar
  132. Palva S, Palva JM (2007) New vistas for a-frequency band oscillations. Trends Neurosci 30(4):150–158PubMedCrossRefGoogle Scholar
  133. Palva JM, Palva S, Kaila K (2005) Phase synchrony among neuronal oscillations in the human cortex. J Neurosci 25:3962–3972PubMedCrossRefGoogle Scholar
  134. Panksepp J, Fuchs T, Abella Garcia V, Lesiak A (2007) Does any aspect of mind survive brain damage that typically leads to a persistent vegetative state? Ethical considerations. Philos Ethics Humanit Med 2:32PubMedCrossRefGoogle Scholar
  135. Pare P, Collins DR (2000) Neuronal correlates of fear in the lateral amygdala: multiple extracellular recordings in conscious cats. J Neurosci 20:2701–2710PubMedGoogle Scholar
  136. Penttonen M, Buzsáki G (2003) Natural logarithmic relationship between brain oscillators. Thalamus Relat Syst 2:145–152CrossRefGoogle Scholar
  137. Perrin F, Schnakers C, Schabus M, Degueldre C, Goldman S, Bredart S et al (2006) Brain response to one’s own name in vegetative state, minimally conscious state, and locked-in syndrome. Arch Neurol 63:562–569PubMedCrossRefGoogle Scholar
  138. Pfurtscheller G, Neuper C, Schlogl A, Lugger K (1998) Separability of EEG signals recorded during right and left motor imagery using adaptive autoregressive parameters. IEEE Trans Rehabil Eng 6:316–325PubMedCrossRefGoogle Scholar
  139. Plum F, Schiff N, Ribary U, Llinás R (1998) Coordinated expression in chronically unconscious persons. Philos Trans R Soc Lond B Biol Sci 353:1929–1933PubMedCrossRefGoogle Scholar
  140. Pockett S, Holmes MD (2009) Intracranial EEG power spectra and phase synchrony during consciousness and unconsciousness. Conscious Cogn 18(4):1049–1055PubMedCrossRefGoogle Scholar
  141. Pulvermüller F, Preissl H, Lutzenberger W, Birbaumer N (1995) Spectral responses in the gamma-band: physiological signs of higher cognitive processes? NeuroReport 6:2057–2064CrossRefGoogle Scholar
  142. Ray WJ, Cole HW (1985) EEG alpha activity reflects attentional demands, and beta activity reflects emotional and cognitive processes. Science 228:750–752PubMedCrossRefGoogle Scholar
  143. Reijneveld JC, Ponten SC, Berendse HW, Stam CJ (2007) The application of graph theoretical analysis to complex networks in the brain. Clin Neurophysiol 118:2317–2331PubMedCrossRefGoogle Scholar
  144. Revonsuo A (2006) Inner presence: consciousness as a biological phenomenon. MIT Press, CambridgeGoogle Scholar
  145. Robinson PA, Rennie CJ, Wright JJ, Bahramali H, Gordon E, Rowe DL (2001) Prediction of electroencephalographic spectra from neurophysiology. Phys Rev E 63:021903-1–021903-18Google Scholar
  146. Royal College of Physicians (UK) (2003) The vegetative state: guidance on diagnosis and management. A report of a working party of the Royal College of Physicians. Clin Med 2:249–254Google Scholar
  147. Rusalova MN (2006) Frequency-amplitude characteristics of the EEG at different levels of consciousness. Neurosci Behav Physiol 36(4):351–358PubMedCrossRefGoogle Scholar
  148. Ryali S, Glover GH, Chang C, Menon V (2009) Development, validation, and comparison of ICA-based gradient artifact reduction algorithms for simultaneous EEG-spiral in/out and echo-planar fMRI recordings. NeuroImage 48(2):348–361PubMedCrossRefGoogle Scholar
  149. Sachs G, Anderer P, Dantendorfer K, Saletu B (2004) EEG mapping in patients with social phobia. Psychiatry Res Neuroimaging 131:237–247CrossRefGoogle Scholar
  150. Sakatani K, Murata Y, Fukaya C, Yamamoto T, Katayama Y (2003) BOLD functional MRI may overlook activation areas in the damaged brain. Acta Neurochir Suppl 87:59–62PubMedGoogle Scholar
  151. Salek-Haddadi A, Lemieux L, Merschhemke M, Friston KJ, Duncan JS, Fish DR (2003) Functional magnetic resonance imaging of human absence seizures. Ann Neurol 53:663–667PubMedCrossRefGoogle Scholar
  152. Schack B, Klimesch W, Sauseng P (2005) Phase synchronization between theta and upper alpha oscillations in a working memory task. Int J Psychophysiol 57:105–114PubMedCrossRefGoogle Scholar
  153. Schiff ND, Plum F (1999) Cortical function in the persistent vegetative state. Trends Cogn Sci 3:43–44PubMedCrossRefGoogle Scholar
  154. Schiff ND, Ribary U, Moreno DR, Beattie B, Kronberg E, Blasberg R et al (2002) Residual cerebral activity and behavioural segments can remain in the persistently vegetative brain. Brain 125:1210–1234PubMedCrossRefGoogle Scholar
  155. Schiff ND, Rodriguez-Moreno D, Kamal A, Kim KH, Giacino JT, Plum F, Hirsch J (2005) fMRI reveals large-scale network activation in minimally conscious patients. Neurology 64:514–523PubMedCrossRefGoogle Scholar
  156. Schnakers C, Giacino J, Kalmar K, Piret S, Lopez E, Boly M et al (2006) Does the FOUR correctly diagnose the vegetative and minimally conscious states? Ann Neurol 60:744–745PubMedCrossRefGoogle Scholar
  157. Schnakers C, Vanhaudenhuyse A, Giacino J, Ventura M, Boly M, Majerus S et al (2009) Diagnostic accuracy of the vegetative and minimally conscious state: clinical consensus versus standardized neurobehavioral assessment. BMC Neurol 9:35PubMedCrossRefGoogle Scholar
  158. Schoenle PW, Witzke W (2004) How vegetative is the vegetative state? Preserved semantic processing in vegetative state patients: evidence from N 400 eventrelated potentials. Neuro Rehabil 19:329–334Google Scholar
  159. Schölvinck ML, Howarth C, Attwell D (2008) The cortical energy needed for conscious perception. NeuroImage 40:1460–1468PubMedCrossRefGoogle Scholar
  160. Schönle PW, Schwall D (1993) Habituation des blinkreflexes als zeichen früher lernvorgänge bei apallischen patienten. In: von Wild K (ed) Spektrum der neurorehabilitation. Zuckschwerdt, München, pp 158–163Google Scholar
  161. Shaw JC (2003) The brain’s alpha rhythms and the mind. Elsevier Science BV, AmsterdamGoogle Scholar
  162. Singer W (1999) Neuronal synchrony: a versatile code for the definition of relations? Neuron 24:49–65PubMedCrossRefGoogle Scholar
  163. Singer W (2001) Consciousness and the binding problem. Annals NY Acad Sci 929:123–146CrossRefGoogle Scholar
  164. Singer W, Engel AK, Kreiter AK, Munk MHJ, Neuenschwander S, Roelfsema PR (1997) Neural assemblies: necessity, signature and detectability. Trends Cogn Sci 1:252–261PubMedCrossRefGoogle Scholar
  165. Sleigh J, Steyn-Ross M, Steyn-Ross A, Voss L, Wilson M (2010) Anesthesia-induced state transitions in neuronal populations. In: Hudetz A, Pearce R (eds) Suppressing the mind: contemporary clinical neuroscience. Humana Press, New York, pp 139–160Google Scholar
  166. Sokolov EN (1963) Higher nervous functions: the orienting reflex. Annu Rev Physiol 25:545–580PubMedCrossRefGoogle Scholar
  167. Stam CJ (2005) Nonlinear dynamical analysis of EEG and MEG: review of an emerging field. Clin Neurophysiol 116:2266–2301PubMedCrossRefGoogle Scholar
  168. Stam CJ (2006) Nonlinear brain dynamics. Nova Science Publishers Inc, HauppaugeGoogle Scholar
  169. Steriade M (2000) Corticothalamic resonance, states of vigilance and mentation. Neuroscience 101:243–276PubMedCrossRefGoogle Scholar
  170. Tallroth G, Lindgren M, Stenberg G, Rosen I, Agardh CD (1990) Neurophysiological changes during insulin-induced hypoglycaemia and in the recovery period following glucose infusion in Type I (insulin-dependent) diabetes mellitus and in normal man. Diabetologia 33:319–323PubMedCrossRefGoogle Scholar
  171. Thatcher RW, Krause PJ, Hrybyk M (1986) Cortico-cortical associations and EEG coherence: a two-compartmental model. Electroencephalogr Clin Neurophysiol 64:123–143PubMedCrossRefGoogle Scholar
  172. Thatcher RW, Walker RA, Giudice S (1987) Human cerebral hemispheres develop at different rates and ages. Science 236:1110–1113PubMedCrossRefGoogle Scholar
  173. The Multi-Society Task Force on PVS (1994) Medical aspects of the persistent vegetative state (1). New England J Med 330:1499–1508CrossRefGoogle Scholar
  174. Toates F (1998) The interaction of cognitive and stimulus–response processes in the control of behaviour. Neurosci Biobehav Rev 22:59–83PubMedCrossRefGoogle Scholar
  175. Tononi G (2004) An information integration theory of consciousness. BMC Neuroscience 5:42PubMedCrossRefGoogle Scholar
  176. Tononi G (2008) Consciousness as integrated information: a provisional manifesto. Biol Bull 215:216–242PubMedCrossRefGoogle Scholar
  177. Tononi G, Edelman GM (1998) Consciousness and complexity. Science 282:1846–1851PubMedCrossRefGoogle Scholar
  178. Tononi G, Laureys S (2008) The neurology of consciousness: an overview. In: Laureys S, Tononi G (eds) The neurology of consciousness. Elsevier, Oxford, pp 375–412Google Scholar
  179. Tononi G, Sporns O (2003) Measuring information integration. BMC Neurosci 4:31PubMedCrossRefGoogle Scholar
  180. Treisman AM, Kanwisher NG (1998) Perceiving visually presented objects: recognition awareness and modularity. Curr Opin Neurobiol 8:218–226PubMedCrossRefGoogle Scholar
  181. Truccolo WA, Ding M, Knuth KH, Nakamura R, Bressler S (2002) Trial-to-trial variability of cortical evoked responses: implications for analysis of functional connectivity. Clin Neurophysiol 113:206–226PubMedCrossRefGoogle Scholar
  182. van Elk M, van Schie HT, van den Heuvel R, Bekkering H (2010) Semantics in the motor system: motorcortical beta oscillations reflect semantic knowledge of end-postures for object use. Front Hum Neurosci 4:8PubMedGoogle Scholar
  183. van Leeuwen C (2007) What needs to emerge to make you conscious? J Conscious Stud 14:115–136Google Scholar
  184. Vanhaudenhuyse A, Noirhomme Q, Tshibanda LJ-F, Bruno M-A, Boveroux P, Schnakers C et al (2010) Default network connectivity reflects the level of consciousness in non-communicative brain-damaged patients. Brain 133:161–171PubMedCrossRefGoogle Scholar
  185. Varela F (1995) Resonant cell assemblies: a new approach to cognitive functions and neuronal synchrony. Biol Res 28:81–95PubMedGoogle Scholar
  186. Varela F, Lachaux JP, Rodriguez E, Martinerie J (2001) The brain web: phase synchronization and large-scale integration. Nat Rev Neurosci 2:229–239PubMedCrossRefGoogle Scholar
  187. Velmans M (1991) Is human information processing conscious? Behav Brain Sci 14:651–726CrossRefGoogle Scholar
  188. von der Malsburg C (1999) The what and why of binding: the modeler’s perspective. Neuron 24:95–104CrossRefGoogle Scholar
  189. von Stein A, Chiang C, König P (2000) Top-down processing mediated by interareal synchronization. Proc Natl Acad Sci USA 97:14748–14753CrossRefGoogle Scholar
  190. Wackermann J, Allefeld C (2007) On the meaning and interpretation of global descriptors of brain electrical activity. Including a reply to X. Pei et al. Int J Psychophysiol 64:199–210PubMedCrossRefGoogle Scholar
  191. Weiss S, Rappelsberger P (2000) Long-range EEG synchronization during word encoding correlates with successful memory performance. Brain Res Cogn Brain Res 9:299–312PubMedCrossRefGoogle Scholar
  192. Whitham EM, Pope KJ, Fitzgibbon SP, Lewis T, Clark CR, Loveless S et al (2007) Scalp electrical recording during paralysis: quantitative evidence that EEG frequencies above 20 Hz are contaminated by EMG. Clin Neurophysiol 118:1877–1888PubMedCrossRefGoogle Scholar
  193. Williamson PC, Csima A, Galin H, Mamelak M (1986) Spectral EEG correlates of dream recall. Biol Psychiatry 21:717–723PubMedCrossRefGoogle Scholar
  194. Yingling CD (2001) Neural mechanisms of unconscious cognitive processing. Clin Neurophysiol 112:157–158PubMedCrossRefGoogle Scholar
  195. Yuval-Greenberg S, Tomer O, Keren AS, Nelken I, Deouell LY (2008) Transient induced gamma-band response in EEG as a manifestation of miniature saccades. Neuron 58:429–441PubMedCrossRefGoogle Scholar

Copyright information

© Marta Olivetti Belardinelli and Springer-Verlag 2011

Authors and Affiliations

  • Andrew A. Fingelkurts
    • 1
    Email author
  • Alexander A. Fingelkurts
    • 1
  • Sergio Bagnato
    • 2
    • 3
  • Cristina Boccagni
    • 2
    • 3
  • Giuseppe Galardi
    • 2
    • 3
  1. 1.BM-Science—Brain and Mind Technologies Research CentreEspooFinland
  2. 2.Neurorehabilitation Unit, Rehabilitation DepartmentFondazione Istituto “San Raffaele—G. Giglio”CefalùItaly
  3. 3.Neurophysiology Unit, Rehabilitation DepartmentFondazione Istituto “San Raffaele—G. Giglio”CefalùItaly

Personalised recommendations