Cognitive Processing

, Volume 12, Issue 2, pp 183–196 | Cite as

The semantic organization of the animal category: evidence from semantic verbal fluency and network theory

  • Joaquín Goñi
  • Gonzalo Arrondo
  • Jorge Sepulcre
  • Iñigo Martincorena
  • Nieves Vélez de Mendizábal
  • Bernat Corominas-Murtra
  • Bartolomé Bejarano
  • Sergio Ardanza-Trevijano
  • Herminia Peraita
  • Dennis P. Wall
  • Pablo Villoslada
Research Report


Semantic memory is the subsystem of human memory that stores knowledge of concepts or meanings, as opposed to life-specific experiences. How humans organize semantic information remains poorly understood. In an effort to better understand this issue, we conducted a verbal fluency experiment on 200 participants with the aim of inferring and representing the conceptual storage structure of the natural category of animals as a network. This was done by formulating a statistical framework for co-occurring concepts that aims to infer significant concept–concept associations and represent them as a graph. The resulting network was analyzed and enriched by means of a missing links recovery criterion based on modularity. Both network models were compared to a thresholded co-occurrence approach. They were evaluated using a random subset of verbal fluency tests and comparing the network outcomes (linked pairs are clustering transitions and disconnected pairs are switching transitions) to the outcomes of two expert human raters. Results show that the network models proposed in this study overcome a thresholded co-occurrence approach, and their outcomes are in high agreement with human evaluations. Finally, the interplay between conceptual structure and retrieval mechanisms is discussed.


Verbal fluency Switching-clustering Semantic memory Network theory 



We would like to acknowledge Ricard V. Solé, Jean Bragard and John F. Wesseling for helpful discussions; Lluis Samaranch for his useful comments and for being rater 2. JG to UTE project CIMA. BCM to James McDonnell Foundation. SAT to project MTM 2009-14409-C02-01. We also thank the referees for their thorough review and highly appreciate their comments and suggestions.

Supplementary material

10339_2010_372_MOESM1_ESM.rar (133 kb)
Supplementary material 1 (RAR 134 kb)


  1. Albert R, Barabási AL (2002) Statistical mechanics of complex networks. Rev Modern Phys 74:47CrossRefGoogle Scholar
  2. Aloia M, Gourovitch M, Weinberger D, Goldberg T (1996) An investigation of semantic space in patients with schizophrenia. J Int Neuropsychol Soc 2(4):267–273PubMedCrossRefGoogle Scholar
  3. Alvarez B, Cuetos F (2007) Objective age of acquisition norms for a set of 328 words in spanish. Behav Res Methods 39(3):377–383PubMedCrossRefGoogle Scholar
  4. Anderson JR (1976) Language, memory and thought. Lawrence Earlbaum, HillsdaleGoogle Scholar
  5. Anderson JR, Pirolli PL (1984) Spread of activation. J Exp Psychol Learn Mem Cogn 10(4):791–798CrossRefGoogle Scholar
  6. Ardila A, Ostrosky-Solís F (2006) Cognitive testing toward the future: the example of semantic verbal fluency (animals). Int J Psychol 41(5):324–332CrossRefGoogle Scholar
  7. Arenas A, Fernández A, Fortunato S, Gómez S (2008) Motif-based communities in complex networks. J Phys A Math Theor 41(5):224,001Google Scholar
  8. Batagelj V, Mrvar A (2002) Pajek—analysis and visualization of large networks, vol 2265. Springer, BerlinGoogle Scholar
  9. Boccaletti S, Latora V, Moreno Y, Chavez M, Hwang D (2006) Complex networks: structure and dynamics. Phys Rep 424:175–308CrossRefGoogle Scholar
  10. Boguñá M, Krioukov D, Claffy K (2009) Navigability of complex networks. Nat Phys 5(1):74–80CrossRefGoogle Scholar
  11. Borge-Holthoefer J, Arenas A (2010a) Categorizing words through semantic memory navigation. Eur Phys J B 74(2):265CrossRefGoogle Scholar
  12. Borge-Holthoefer J, Arenas A (2010b) Semantic networks: structure and dynamics. Entropy 12(5):1264–1302CrossRefGoogle Scholar
  13. Bousfield W, Barclay W (1950) The relationship between order and frequency of occurrence of restricted associative responses. J Exp Psychol 40(5):643–647PubMedCrossRefGoogle Scholar
  14. Bousfield W, Sedgewick C (1944) An analysis of sequences of restricted associative responses. J Gen Psychol 30:149–165Google Scholar
  15. Budson AE, Price BH (2005) Memory dysfunction. N Engl J Med 352(7):692–699PubMedCrossRefGoogle Scholar
  16. Chan A, Butters N, Paulsen J, Salmon D, Swenson M, Maloney L (1993) An assessment of the semantic network in patients with alzheimers-disease. J Cogn Neurosci 5:254–261CrossRefGoogle Scholar
  17. Chouinard P, Goodale M (2010) Category-specific neural processing for naming pictures of animals and naming pictures of tools: an ale meta-analysis. Neuropsychologia 48(2):409–418PubMedCrossRefGoogle Scholar
  18. Clauset A, Moore C, Newman M (2008) Hierarchical structure and the prediction of missing links in networks. Nature 453(7191):98–101PubMedCrossRefGoogle Scholar
  19. Clopper C, Pearson S (1934) The use of confidence or fiducial limits illustrated in the case of the binomial. Biometrika 26:404–413CrossRefGoogle Scholar
  20. Cohen J (1960) A coefficient of agreement for nominal scales. Educ Psychol Measure 20(1):37–46CrossRefGoogle Scholar
  21. Collins AM, Loftus EF (1975) A spreading-activation theory of semantic processing. Psychol Rev 82(6):407–428CrossRefGoogle Scholar
  22. Collins AM, Quillian MR (1969) Retrieval time from semantic memory. J Verbal Learn Verbal Behav 8(2):240–248CrossRefGoogle Scholar
  23. Collins AM, Quillian MR (1970) Does category size affect categorization time? J Verbal Learn Verbal Behav 9(4):432–438CrossRefGoogle Scholar
  24. Crowe S, Prescott T (2003) Continuity and change in the development of category structure: insights from the semantic fluency task. Int J Behav Dev 27(5):467–479CrossRefGoogle Scholar
  25. Danon L, Duch J, Arenas A, Díaz-Guilera A (2007) Large scale structure and dynamics of complex networks: from information technology to finance and natural science. World Scientific, Singapore, pp 93–113Google Scholar
  26. Eguíluz V, Chialvo D, Cecchi G, Baliki M, Apkarian A (2005) Scale-free brain functional networks. Phys Rev Lett 94(1):018,102CrossRefGoogle Scholar
  27. Erdös P, Rényi A (1960) On the evolution of random graphs. Publ Math Inst Hung Acad Sci 5:17–61Google Scholar
  28. Ferrer i Cancho R, Solé RV (2001) The small world of human language. Proc R Soc Lond Ser B Biol Sci 268(1482):2261–2265CrossRefGoogle Scholar
  29. Galeote M, Peraita H (1999) Memoria semántica y fluidez verbal en demencias. Revista Española de Neuropsicol 1(2–3):3–17Google Scholar
  30. Goñi J, Martincorena I, Corominas-Murtra B, Arrondo G, Ardanza-Trevijano S, Villoslada P (2010) Switcher-random-walks: a cognitive inspired strategy for random exploration on networks. Int J Bifurc Chaos 20(3):913–922CrossRefGoogle Scholar
  31. Griffiths TL, Steyvers M, Tenenbaum JB (2007) Topics in semantic representation. Psychol Rev 114(2):211–244PubMedCrossRefGoogle Scholar
  32. Gruenewald P, Lockhead G (1980) The free recall of category examples. J Exp Psychol Hum Learn Mem 6(3):225–240CrossRefGoogle Scholar
  33. Guimera R, Sales-Pardo M (2009) Missing and spurious interactions and the reconstruction of complex networks. Proc Natl Acad Sci USA 106:22,073–22,078CrossRefGoogle Scholar
  34. Hayes-Roth B (1977) Evolution of cognitive structures and processes. Psychol Rev 84(3):260–278CrossRefGoogle Scholar
  35. Henley NM (1969) A psychological study of the semantics of animal terms. J Verbal Learn Verbal Behav 8:176–184CrossRefGoogle Scholar
  36. Jeong H, Mason S, Barabási AL, Oltvai Z (2001) Lethality and centrality in protein networks. Nature 411(6833):41–42PubMedCrossRefGoogle Scholar
  37. Lerner A, Ogrocki P, Thomas P (2009) Network graph analysis of category fluency testing. Cogn Behav Neurol 22(1):45–52PubMedCrossRefGoogle Scholar
  38. Lezak M (1995) Neuropsychological assessment, 3rd edn. Oxford University Press, New YorkGoogle Scholar
  39. Lund K, Burgess C (1996) Producing high dimensional semantic spaces from lexical co-ocurrence. Behav Res Methods Instrum Comput 28(2):203–208CrossRefGoogle Scholar
  40. Mestres J, Gregori-Puigjané E, Valverde S, Solé R (2008) Data completeness-the achilles heel of drug-target networks. Nat Biotechnol 26(9):983–984PubMedCrossRefGoogle Scholar
  41. Motter AE, de Moura AP, Lan YC, Dasgupta P (2002) Topology of the conceptual network of language. Phys Rev E 65(065102)Google Scholar
  42. Newman M (2003) The structure and function of complex networks. SIAM Rev 45:167–256CrossRefGoogle Scholar
  43. Noh JD, Rieger H (2004) Random walks on complex networks. Phys Rev Lett 92(11)Google Scholar
  44. Overschelde JPV, Rawson K, Dunlosky J (2004) Category norms: an updated and expanded version of the battig and montague (1969) norms. J Mem Lang 50:289–335CrossRefGoogle Scholar
  45. Patterson K, Nestor PJ, Rogers TT (2007) Where do you know what you know? the representation of semantic knowledge in the human brain. Nat Rev Neurosci 8:976–987PubMedCrossRefGoogle Scholar
  46. Prescott TJ, Newton LD, Mir NU, Woodruff PW, Parks RW (2006) A new dissimilarity measure for finding semantic structure in cathegory fluency data with implications for understanding memory organization in schizophrenia. Neuropsychology 20(6):685–699PubMedCrossRefGoogle Scholar
  47. Quillian MR (1967) Word concepts: A theory and simulation of some basic semantic capabilities. Behav Sci 12(5):410–430PubMedCrossRefGoogle Scholar
  48. Raskin S, Sliwinski M, Borod J (1992) Clustering strategies on tasks of verbal fluency in parkinson’s disease. Neuropsychologia 30(1):95–99PubMedCrossRefGoogle Scholar
  49. Ravasz E, Somera A, Mongru D, Oltvai Z, Barabási AL (2002) Hierarchical organization of modularity in metabolic networks. Science 297(5586):1551–1555PubMedCrossRefGoogle Scholar
  50. Rips LJ, Shoben EJ, Smith EE (1973) Semantic distance and the verification of semantic relations. J Verbal Learn Verbal Behav 12:1–20CrossRefGoogle Scholar
  51. Rogers T, Lambon Ralph M, Garrard P, Bozeat S, McClelland J, Hodges J, K KP (2004) Structure and deterioration of semantic memory: a neuropsychological and computational investigation. Psychol Rev 111(1):205–235PubMedCrossRefGoogle Scholar
  52. Rosch E (1974) Linguistic relativity. In: Silverstein A (eds) Human communication: theoretical perspectives. Halsted Press, New SorkGoogle Scholar
  53. Rosch E (1975) Cognitive representations of semantic categories. J Exp Psychol Gen 104(3):192–233CrossRefGoogle Scholar
  54. Rosch E, Mervis CB (1975) Family resemblances: studies in the internal structure of categories. Cogn Psychol 7:573–605CrossRefGoogle Scholar
  55. Rosch E, Simpson C, Miller RS (1976) Structural bases of tipicality. J Exp Psychol Hum Percept Perform 2(4):491–502CrossRefGoogle Scholar
  56. Rosvall M, Bergstrom CT (2008) Maps of random walks on complex networks reveal community structure. Proc Natl Acad Sci USA 105(4):1118–1123PubMedCrossRefGoogle Scholar
  57. Schwartz S, Baldo J (2001) Distinct patterns of word retrieval in right and left frontal lobe patients: a multidimensional perspective. Neuropsychologia 39(11):1209–1217PubMedCrossRefGoogle Scholar
  58. Schwartz S, Baldo J, Graves RE, Brugger P (2003) Pervasive influence of semantics in letter and category fluency: a multidimensional approach. Brain Lang 87:400–411PubMedCrossRefGoogle Scholar
  59. Shannon P, Markiel A, Ozier O, Baliga N, Wang J, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13(11):2498–2504PubMedCrossRefGoogle Scholar
  60. Sigman M, Cecchi G (2002) Global organization of the wordnet lexicon. PNAS 99(3):1742–1747PubMedCrossRefGoogle Scholar
  61. Sloman SA (1998) Categorical inference is not a tree: the myth of inheritance hierarchies. Cogn Psychol 35:1–33PubMedCrossRefGoogle Scholar
  62. Solé RV, Corominas-Murtra B, Valverde S, Steels L (2010) Language networks: their structure, function and evolution. ComplexityGoogle Scholar
  63. Sporns O, Chialvo D, Kaiser M, Hilgetag C (2004) Organization, development and function of complex brain networks. Trends Cogn Sci 8:418–425PubMedCrossRefGoogle Scholar
  64. Steyvers M, Tenenbaum JB (2005) The large-scale structure of semantic networks: Statistical analyses and a model of semantic growth. Cogn Sci 29:41–78CrossRefGoogle Scholar
  65. Tröster A, Fields J, Testa J, Paul R, Blanco C, Hames K, Salmon D, Beatty W (1998) Cortical and subcortical influences on clustering and switching in the performance of verbal fluency tasks. Neuropsychologia 36(4):295–304PubMedCrossRefGoogle Scholar
  66. Troyer AK (2000) Normative data for clustering and switching on verbal fluency tasks. J Clin Exp Neuropsychol 22(3):370–378PubMedCrossRefGoogle Scholar
  67. Troyer AK, Moscovitch M, Winocur G (1997) Clustering and switching as two components of verbal fluency: evidence from younger and older healthy adults. Neuropsychology 11(1):138–146PubMedCrossRefGoogle Scholar
  68. Troyer AK, Moscovitch M, Winocur G, Alexander MP, Stuss D (1998a) Clustering and switching on verbal fluency: the effect of focal frontal- and temporal-lobe lesions. Neuropsychologia 36(6):499–504PubMedCrossRefGoogle Scholar
  69. Troyer AK, Moscovitch M, Winocur G, Leach L, Freedman M (1998b) Clustering and switching on verbal fluency tests in alzheimer’s and parkinson’s disease. J Int Neuropsychol Soc 4(2):137–143PubMedCrossRefGoogle Scholar
  70. Villodre R, Sánchez-Alfonso A, Brines L, Nunez A, Chirivella J, Ferri J, Noe E (2006) Fluencia verbal: estudio normativo piloto según estrategias de agrupación y saltos de palabras en población espańola de 20 a 49 ańos. Neurología 21(3):124–130PubMedGoogle Scholar
  71. Voy B, Scharff J, ADPerkins, Saxton A, Borate B, Chesler E, Branstetter L, Langston M (2006) Extracting gene networks for low-dose radiation using graph theoretical algorithms. Plos Comput Biol 2(7):e89PubMedCrossRefGoogle Scholar
  72. Wagner G, Pavlicev M, Cheverud J (2007) The road to modularity. Nat Rev Genet 8(12):921–931PubMedCrossRefGoogle Scholar
  73. Wasserman S, Faust K (1994) Social network analysis: methods and applications. Cambridge University Press, CambridgeGoogle Scholar
  74. Watts D, Strogatz S (1998) Collective dynamics of 'small-world’ networks. Nature 4(393):440–442CrossRefGoogle Scholar
  75. Wixted J, Rohrer D (1994) Analyzing the dynamics of free recall: An integrative review of the empirical literature. Psychon Bull Rev 1(1):89–106CrossRefGoogle Scholar
  76. Yip AM, Horvath S (2007) Gene network interconnectedness and the generalized topological overlap measure. BMC Bioinform 8(22)Google Scholar

Copyright information

© Marta Olivetti Belardinelli and Springer-Verlag 2010

Authors and Affiliations

  • Joaquín Goñi
    • 1
    • 2
  • Gonzalo Arrondo
    • 1
  • Jorge Sepulcre
    • 1
  • Iñigo Martincorena
    • 1
  • Nieves Vélez de Mendizábal
    • 1
  • Bernat Corominas-Murtra
    • 3
  • Bartolomé Bejarano
    • 1
  • Sergio Ardanza-Trevijano
    • 2
  • Herminia Peraita
    • 4
  • Dennis P. Wall
    • 5
  • Pablo Villoslada
    • 6
  1. 1.Department of Neurosciences. Center for Applied Medical ResearchUniversity of NavarraPamplonaSpain
  2. 2.Department of Physics and Applied MathematicsUniversity of NavarraPamplonaSpain
  3. 3.ICREA-Complex Systems LabUniversitat Pompeu Fabra-Parc de Recerca Biomèdica de BarcelonaBarcelonaSpain
  4. 4.Department of PsychologyNational University of Distance Education (UNED)MadridSpain
  5. 5.The Center for Biomedical InformaticsHarvard Medical SchoolBostonUSA
  6. 6.Department of NeurosciencesInstitut d’investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain

Personalised recommendations