Cognitive Processing

, Volume 11, Issue 1, pp 21–30 | Cite as

A self-referential default brain state: patterns of coherence, power, and eLORETA sources during eyes-closed rest and Transcendental Meditation practice

  • Fred TravisEmail author
  • David A. F. Haaga
  • John Hagelin
  • Melissa Tanner
  • Alaric Arenander
  • Sanford Nidich
  • Carolyn Gaylord-King
  • Sarina Grosswald
  • Maxwell Rainforth
  • Robert H. Schneider
Research Report


Activation of a default mode network (DMN) including frontal and parietal midline structures varies with cognitive load, being more active during low-load tasks and less active during high-load tasks requiring executive control. Meditation practices entail various degrees of cognitive control. Thus, DMN activation patterns could give insight into the nature of meditation practices. This 10-week random assignment study compared theta2, alpha1, alpha2, beta1, beta2 and gamma EEG coherence, power, and eLORETA cortical sources during eyes-closed rest and Transcendental Meditation (TM) practice in 38 male and female college students, average age 23.7 years. Significant brainwave differences were seen between groups. Compared to eyes-closed rest, TM practice led to higher alpha1 frontal log-power, and lower beta1 and gamma frontal and parietal log-power; higher frontal and parietal alpha1 interhemispheric coherence and higher frontal and frontal-central beta2 intrahemispheric coherence. eLORETA analysis identified sources of alpha1 activity in midline cortical regions that overlapped with the DMN. Greater activation in areas that overlap the DMN during TM practice suggests that meditation practice may lead to a foundational or ‘ground’ state of cerebral functioning that may underlie eyes-closed rest and more focused cognitive processes.


Coherence Power LORETA Transcendental Meditation Alpha Beta1 



We thank the Abramson Family Foundation, Howard and Alice Settle, and other private donors for funding this study. We thank Dietrich Lehmann, Pascal Faber, and Roberto D. Pascual-Marqui for their patient instruction in the use of LORETA; and Mario Orsatti and Linda Mainquist for coordinating and conducting the TM intervention in this study. These experiments comply with the current laws of the United States in performing research, and the IRBs at American University and Maharishi University of Management approved the project before it was begun.


  1. Aftanas LI, Golocheikine SA (2001) Human anterior and frontal midline theta and lower alpha reflect emotionally positive state and internalized attention: high-resolution EEG investigation of meditation. Neurosci Lett 310(1):57–60CrossRefPubMedGoogle Scholar
  2. Aftanas LI, Golocheikine SA (2002) Non-linear dynamic complexity of the human EEG during meditation. Neurosci Lett 330(2):143–146CrossRefPubMedGoogle Scholar
  3. Badawi K, Wallace RK, Orme-Johnson D, Rouzere AM (1984) Electrophysiologic characteristics of respiratory suspension periods occurring during the practice of the Transcendental Meditation Program. Psychosom Med 46(3):267–276PubMedGoogle Scholar
  4. Banquet JP (1973) Spectral analysis of the EEG in meditators. Electroencephalogr Clin Neurophysiol 35:143–151CrossRefPubMedGoogle Scholar
  5. Brefczynski-Lewis JA, Lutz A, Schaefer HS, Levinson DB, Davidson RJ (2007) Neural correlates of attentional expertise in long-term meditation practitioners. Proc Natl Acad Sci USA 104(27):11483–11488CrossRefPubMedGoogle Scholar
  6. Buckner RL, Carroll DC (2007) Self-projection and the brain. Trends Cogn Sci 11(2):49–57CrossRefPubMedGoogle Scholar
  7. Christoff K, Gordon AM, Smallwood J, Smith R, Schooler JW (2009) Experience sampling during fMRI reveals default network and executive system contributions to mind wandering. Proc Natl Acad Sci USA 106(21):8719–8724CrossRefPubMedGoogle Scholar
  8. Cooper NR, Burgess AP, Croft RJ, Gruzelier JH (2006) Investigating evoked and induced electroencephalogram activity in task-related alpha power increases during an internally directed attention task. Neuroreport 17(2):205–208CrossRefPubMedGoogle Scholar
  9. Davidson RJ (1992) Anterior cerebral asymmetry and the nature of emotion. Brain Cogn 20(1):125–151CrossRefPubMedGoogle Scholar
  10. Davidson RJ, Ekman P, Saron CD, Senulis JA, Friesen WV (1990) Approach-withdrawal and cerebral asymmetry: emotional expression and brain physiology. I. J Pers Soc Psychol 58(2):330–341CrossRefPubMedGoogle Scholar
  11. Davidson RJ, Jackson DC, Kalin NH (2000) Emotion, plasticity, context, and regulation: perspectives from affective neuroscience. Psychol Bull 126(6):890–909CrossRefPubMedGoogle Scholar
  12. Davidson RJ, Kabat-Zinn J, Schumacher J, Rosenkranz M, Muller D, Santorelli SF, Urbanowski F, Harrington A, Bonus K, Sheridan JF (2003) Alterations in brain and immune function produced by mindfulness meditation. Psychosom Med 65(4):564–570CrossRefPubMedGoogle Scholar
  13. Decety J, Chaminade T, Grezes J, Meltzoff AN (2002) A PET exploration of the neural mechanisms involved in reciprocal imitation. Neuroimage 15(1):265–272CrossRefPubMedGoogle Scholar
  14. Dillbeck MC, Bronson EC (1981) Short-term longitudinal effects of the transcendental meditation technique on EEG power and coherence. The International journal of neuroscience 14(3–4):147–151CrossRefPubMedGoogle Scholar
  15. Dillbeck MC, Orme-Johnson DW (1987) Physiological differences between Transcendental Meditation and Rest. Am Psychol 42:879–881CrossRefGoogle Scholar
  16. Farrow JT, Hebert JR (1982) Breath suspension during the transcendental meditation technique. Psychosom Med 44(2):133–153PubMedGoogle Scholar
  17. Fox MD, Raichle ME (2007) Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat Rev Neurosci 8(9):700–711CrossRefPubMedGoogle Scholar
  18. Fuchs M, Kastner J, Wagner M, Hawes S, Ebersole JS (2002) A standardized boundary element method volume conductor mode. Clinical and Neurophysiology 113:702–712CrossRefGoogle Scholar
  19. Gaylord C, Orme-Johnson D, Travis F (1989) The effects of the Transcendental Meditation technique and progressive muscle relaxation on EEG coherence, stress reactivity, and mental health in black adults. The International journal of neuroscience 46(1–2):77–86CrossRefPubMedGoogle Scholar
  20. Gusnard DA, Raichle ME, Raichle ME (2001) Searching for a baseline: functional imaging and the resting human brain. Nat Rev Neurosci 2(10):685–694CrossRefPubMedGoogle Scholar
  21. Hagelin J, Rainforth M, Orme-Johnson D, Cavanaugh K, Alexander C, Shatkin S (1999) Effects of group practice of the Transcendental Meditation program on preventing violent crime in Washington, DC: results of the National Demonstration Project, June-July 1993. Soc Indic Res 47(2):153–201CrossRefGoogle Scholar
  22. Hebert R, Lehmann D (1977) Theta bursts: an EEG pattern in normal subjects practising the transcendental meditation technique. Electroencephalogr Clin Neurophysiol 42(3):397–405CrossRefPubMedGoogle Scholar
  23. Jurcak V, Tsuzuki D, Dan I (2007) 10/20, 10/10, and 10/5 systems revisited: their validity as relative head-surface-based positioning systems. Neuroimage 34:1600–1611CrossRefPubMedGoogle Scholar
  24. Kelley WM, Macrae CN, Wyland CL, Caglar S, Inati S, Heatherton TF (2002) Finding the self? An event-related fMRI study. J Cogn Neurosci 14(5):785–794CrossRefPubMedGoogle Scholar
  25. Kjaer TW, Nowak M, Lou HC (2002) Reflective self-awareness and conscious states: PET evidence for a common midline parietofrontal core. Neuroimage 17(2):1080–1086CrossRefPubMedGoogle Scholar
  26. Kounios J, Beeman M (2009) The aha! moment: the cognitive neuroscience of insight. Curr Dir Psychol Sci 18(4):210–216CrossRefGoogle Scholar
  27. Kubota Y, Sato W, Toichi M, Murai T, Okada T, Hayashi A, Sengoku A (2001) Frontal midline theta rhythm is correlated with cardiac autonomic activities during the performance of an attention demanding meditation procedure. Brain Res Cogn Brain Res 11(2):281–287CrossRefPubMedGoogle Scholar
  28. Lutz A, Greischar LL, Rawlings NB, Ricard M, Davidson RJ (2004) Long-term meditators self-induce high-amplitude gamma synchrony during mental practice. Proc Natl Acad Sci USA 101(46):16369–16373CrossRefPubMedGoogle Scholar
  29. Mason MF, Norton MI, Van Horn JD, Wegner DM, Grafton ST, Macrae CN (2007) Wandering minds: the default network and stimulus-independent thought. Science 315(5810):393–395CrossRefPubMedGoogle Scholar
  30. Oakes TR, Pizzagalli DA, Hendrick AM, Horras KA, Larson CL, Abercrombie HC, Schaefer SM, Koger JV, Davidson RJ (2004) Functional coupling of simultaneous electrical and metabolic activity in the human brain. Hum Brain Mapp 21(4):257–270CrossRefPubMedGoogle Scholar
  31. Orme-Johnson DW, Haynes CT (1981) EEG phase coherence, pure consciousness, creativity, and TM–Sidhi experiences. The International journal of neuroscience 13(4):211–217CrossRefPubMedGoogle Scholar
  32. Pagnoni G, Cekic M, Guo Y (2008) Thinking about not-thinking: neural correlates of conceptual processing during zen meditation. PLoS ONE 3(9):e3083CrossRefPubMedGoogle Scholar
  33. Palva JM, Palva S, Kaila K (2005) Phase synchrony among neuronal oscillations in the human cortex. J Neurosci 25(15):3962–3972CrossRefPubMedGoogle Scholar
  34. Pascual-Marqui RD (2007) Discrete, 3D distributed, linear imaging methods of electric neuronal activity. Part 1: exact, zero error localization. arXiv:0710.3341 [math-ph]Google Scholar
  35. Pascual-Marqui RD, Michel CM, Lehmann D (1994) Low resolution electromagnetic tomography: a new method for localizing electrical activity in the brain. Int J Psychophysiol 18:49–65CrossRefPubMedGoogle Scholar
  36. Pascual-Marqui RD, Esslen M, Kochi K, Lehmann D (2002) Functional imaging with low-resolution brain electromagnetic tomography (LORETA): a review”. Methods Find Exp Clin Pharmacol 24(Suppl C):91–95PubMedGoogle Scholar
  37. Pfurtscheller G, Stancak A, Neuper C (1996) Event-related synchronization (ERS) in the alpha band–an electrophysiological correlate of cortical idling: a review. Int J Psychophysiol 24:39–46CrossRefPubMedGoogle Scholar
  38. Raichle ME, Snyder AZ (2007) A default mode of brain function: a brief history of an evolving idea. Neuroimage 37(4):1083–1090 Discussion 1097–1099CrossRefPubMedGoogle Scholar
  39. Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL (2001) A default mode of brain function. Proc Natl Acad Sci USA 98(2):676–682CrossRefPubMedGoogle Scholar
  40. Scheeringa R, Bastiaansen MC, Petersson KM, Oostenveld R, Norris DG, Hagoort P (2008) Frontal theta EEG activity correlates negatively with the default mode network in resting state. Int J Psychophysiol 67(3):242–251CrossRefPubMedGoogle Scholar
  41. Scheeringa R, Petersson KM, Oostenveld R, Norris DG, Hagoort P, Bastiaansen MC (2009) Trial-by-trial coupling between EEG and BOLD identifies networks related to alpha and theta EEG power increases during working memory maintenance. Neuroimage 44(3):1224–1238CrossRefPubMedGoogle Scholar
  42. Schneider W, Pimm-Smith M, Worden M (1994) Neurobiology of attention and automaticity. Curr Opin Neurobiol 4(2):177–182CrossRefPubMedGoogle Scholar
  43. Travis FT (1991) Eyes open and TM EEG patterns after one and after eight years of TM practice. Psychophysiology 28(3):S58Google Scholar
  44. Travis F (2001) Autonomic and EEG patterns distinguish transcending from other experiences during Transcendental Meditation practice. Int J Psychophysiol 42(1):1–9CrossRefPubMedGoogle Scholar
  45. Travis F, Arenander A (2006) Cross-sectional and longitudinal study of effects of Transcendental Meditation practice on interhemispheric frontal asymmetry and frontal coherence. Int J Neurosci 116(12):1519–1538CrossRefPubMedGoogle Scholar
  46. Travis F, Pearson C (2000) Pure consciousness: distinct phenomenological and physiological correlates of “consciousness itself”. Int J Neurosci 100(1–4):77–89CrossRefPubMedGoogle Scholar
  47. Travis F, Wallace RK (1997) Autonomic patterns during respiratory suspensions: possible markers of Transcendental Consciousness. Psychophysiology 34(1):39–46CrossRefPubMedGoogle Scholar
  48. Travis F, Wallace RK (1999) Autonomic and EEG patterns during eyes-closed rest and transcendental meditation (TM) practice: the basis for a neural model of TM practice. Conscious Cogn 8(3):302–318CrossRefPubMedGoogle Scholar
  49. Travis F, Tecce JJ, Durchholz C (2001) Cortical Plasticity, CNV, and Transcendent Experiences: Replication with subjects reporting permanent transcendental experiences. Psychophysiology 38:S95Google Scholar
  50. Travis FT, Tecce J, Arenander A, Wallace RK (2002) Patterns of EEG coherence, power, and contingent negative variation characterize the integration of transcendental and waking states. Biol Psychol 61:293–319CrossRefPubMedGoogle Scholar
  51. Travis FT, Arenander AT, DuBois D (2004) Psychological and physiological characteristics of a proposed object-referral/self-referral continuum of self-awareness. Conscious Cogn 13:401–420CrossRefPubMedGoogle Scholar
  52. Travis F, Haaga DA, Hagelin J, Tanner M, Nidich S, Gaylord-King C, Grosswald S, Rainforth M, Schneider RH (2009) Effects of Transcendental Meditation practice on brain functioning and stress reactivity in college students. Int J Psychophysiol 71(2):170–176CrossRefPubMedGoogle Scholar
  53. Vogeley K, Bussfeld P, Newen A, Herrmann S, Happe F, Falkai P, Maier W, Shah NJ, Fink GR, Zilles K (2001) Mind reading: neural mechanisms of theory of mind and self-perspective”. Neuroimage 14(1 Pt 1):170–181CrossRefPubMedGoogle Scholar
  54. Yamamoto S, Kitamura Y, Yamada N, Nakashima Y, Kuroda S (2006) Medial profrontal cortex and anterior cingulate cortex in the generation of alpha activity induced by transcendental meditation: a magnetoencephalographic study. Acta Medica Okayama 60(1):51–58PubMedGoogle Scholar
  55. Yan C, Liu D, He Y, Zou Q, Zhu C, Zuo X, Long X, Zang Y (2009) Spontaneous brain activity in the default mode network is sensitive to different resting-state conditions with limited cognitive load. PLoS One 4(5):e5743CrossRefPubMedGoogle Scholar
  56. Yang J, Weng X, Zang Y, Xu M, Xu X (2009) Sustained activity within the default mode network during an implicit memory task. Cortex. doi: 10.1016/j.cortex.2009.05.002 Google Scholar
  57. Yogi MM (1969) Maharishi Mahesh Yogi on the Bhagavad Gita. Penguin, New YorkGoogle Scholar

Copyright information

© Marta Olivetti Belardinelli and Springer-Verlag 2009

Authors and Affiliations

  • Fred Travis
    • 1
    Email author
  • David A. F. Haaga
    • 2
  • John Hagelin
    • 3
  • Melissa Tanner
    • 2
  • Alaric Arenander
    • 3
    • 4
  • Sanford Nidich
    • 5
  • Carolyn Gaylord-King
    • 5
  • Sarina Grosswald
    • 3
  • Maxwell Rainforth
    • 5
  • Robert H. Schneider
    • 5
  1. 1.Center for Brain, Consciousness and CognitionMaharishi University of ManagementFairfieldUSA
  2. 2.Psychology DepartmentAmerican UniversityWashingtonUSA
  3. 3.Institute of Science, Technology and Public PolicyFairfieldUSA
  4. 4.Brain Research InstituteMaharishi University of Management Research InstituteMaharishi Vedic CityUSA
  5. 5.Institute for Natural Medicine and PreventionMaharishi University of Management Research InstituteMaharishi Vedic CityUSA

Personalised recommendations