Cognitive Processing

, Volume 11, Issue 1, pp 31–38 | Cite as

Theta activity and meditative states: spectral changes during concentrative meditation

  • Shruti Baijal
  • Narayanan Srinivasan
Research Report


Brain oscillatory activity is associated with different cognitive processes and plays a critical role in meditation. In this study, we investigated the temporal dynamics of oscillatory changes during Sahaj Samadhi meditation (a concentrative form of meditation that is part of Sudarshan Kriya yoga). EEG was recorded during Sudarshan Kriya yoga meditation for meditators and relaxation for controls. Spectral and coherence analysis was performed for the whole duration as well as specific blocks extracted from the initial, middle, and end portions of Sahaj Samadhi meditation or relaxation. The generation of distinct meditative states of consciousness was marked by distinct changes in spectral powers especially enhanced theta band activity during deep meditation in the frontal areas. Meditators also exhibited increased theta coherence compared to controls. The emergence of the slow frequency waves in the attention-related frontal regions provides strong support to the existing claims of frontal theta in producing meditative states along with trait effects in attentional processing. Interestingly, increased frontal theta activity was accompanied reduced activity (deactivation) in parietal–occipital areas signifying reduction in processing associated with self, space and, time.


Meditation EEG Theta oscillations Spectral analysis Coherence 


  1. Aftanas LI, Golocheikine SA (2001) Human anterior and frontal midline theta and lower alpha reflect emotionally positive state and internalized attention: high-resolution EEG investigation of meditation. Neurosci Lett 310:57–60. doi: 10.1016/S0304-3940(01)02094-8 CrossRefPubMedGoogle Scholar
  2. Aftanas LI, Golocheikine SA (2002) Non-linear dynamic complexity of the human EEG during meditation. Neurosci Lett 330:143–146. doi: 10.1016/S0304-3940(02)00745-0 CrossRefPubMedGoogle Scholar
  3. Arambula P, Peper E, Kawakami M, Gibney KH (2001) The physiological correlates of Kundalini Yoga meditation: a study of a Yoga master. Appl Psychophysiol Biofeedback 26:147–153. doi: 10.1023/A:1011343307783 CrossRefPubMedGoogle Scholar
  4. Arnold LE (2001) Alternative treatments for adults with attention-deficit hyperactivity disorder (ADHD). Ann NY Acad Sci 931:310–341PubMedCrossRefGoogle Scholar
  5. Babiloni C, Babiloni F, Carducci F, Cappa SF, Cincotti F, Del Percio C et al (2004) Human cortical responses during one-bit short-term memory. A high-resolution EEG study on delayed choice reaction time tasks. Clin Neurophysiol 115:161–170. doi: 10.1016/S1388-2457(03)00286-4 CrossRefPubMedGoogle Scholar
  6. Banquet JP (1973) Spectral analysis of the EEG in meditation. Electroencephalogr Clin Neurophysiol 35:143–151CrossRefPubMedGoogle Scholar
  7. Basar E (1999) Brain function and oscillations. II. Integrative brain function. Neurophysiology and cognitive processes. Springer, Berlin, HeidelbergGoogle Scholar
  8. Basar E, Basar-Erogluc C, Karakas S, Schurmann M (2001) Gamma, alpha, delta, and theta oscillations govern cognitive processes. Int J Psychophysiol 39:241–248. doi: 10.1016/S0167-8760(00)00145-8 CrossRefPubMedGoogle Scholar
  9. Basar-Eroglu C, Basar E, Demiralp T, Schurmann M (1992) P300-response: possible psychophysiological correlates in delta and theta frequency channels. A review. Int J Psychophysiol 13:161–179. doi: 10.1016/0167-8760(92)90055-G CrossRefPubMedGoogle Scholar
  10. Bastiaansen MC, Posthuma D, Groot PF, de Geus EJ (2002) Event-related alpha and theta responses in a visuo-spatial working memory task. Clin Neurophysiol 113:1882–1893CrossRefPubMedGoogle Scholar
  11. Batelli L, Walsh V, Pascual-Leone A, Cavanagh P (2008) The ‘when’ parietal pathway explored by lesion studies. Curr Opin Neurobiol 18:1–7. doi: 10.1016/j.conb.2008.08.004 CrossRefGoogle Scholar
  12. Beauregard M, Paquette V (2008) EEG activity in Carmelite nuns during a mystical experience. Neurosci Lett 444(1):1–4. doi: 10.1016/j.neulet.2008.08.028 CrossRefPubMedGoogle Scholar
  13. Brefczynski-Lewis JA, Lutz A, Schaefer HS, Levinson DB, Davidson RJ (2007) Neural correlates of attentional expertise in long-term meditation practitioners. Proc Natl Acad Sci USA 104:11483–11488. doi: 10.1073/pnas.0606552104 CrossRefPubMedGoogle Scholar
  14. Cahn BR, Polich J (2006) Meditation states and traits: EEG, ERP, and neuroimaging studies. Psychol Bull 132:180–211. doi: 10.1037/0033-2909.132.2.180 CrossRefPubMedGoogle Scholar
  15. Davidson RJ, Kabat-Zinn J, Schumacher J, Rosenkranz M, Muller D, Santorelli SF et al (2003) Alterations in brain and immune function produced by mindfulness meditation. Psychosom Med 65:564–570. doi: 10.1097/01.PSY.0000077505.67574.E3 CrossRefPubMedGoogle Scholar
  16. Deepak KK, Manchanda SK, Maheshwari MC (1994) Meditation improves clinicoelectroencephalographic measures in drug-resistant epileptics. Biofeedback Self Regul 19:25–40. doi: 10.1007/BF01720668 CrossRefPubMedGoogle Scholar
  17. Deiber MP, Missonnier P, Bertrand O, Gold G, Fazio-Costa L, Ibañez V, Giannakopoulos P (2007) Distinction between perceptual and attentional processing in working memory tasks: a study of phase-locked and induced oscillatory brain dynamics. J Cogn Neurosci 19:158–172. doi: 10.1162/jocn.2007.19.1.158 CrossRefPubMedGoogle Scholar
  18. Dietrich A (2003) Functional neuroanatomy of altered states of consciousness: the transient hypofrontality hypothesis. Conscious Cogn 12:231–256. doi: 10.1016/S1053-8100(02)00046-6 CrossRefPubMedGoogle Scholar
  19. Dunn BR, Hartigan JA, Mikulas WL (1999) Concentration and mindfulness meditations: unique forms of consciousness? Appl Psychophysiol Biofeed 24:147–165CrossRefGoogle Scholar
  20. Gevins A, Smith ME, McEvoy L, Yu D (1997) High-resolution EEG mapping of cortical activation related to working memory: effects of task difficulty, type of processing, and practice. Cereb Cortex 7:374–385CrossRefPubMedGoogle Scholar
  21. Gomarus HK, Althaus M, Wijers AA, Minderaa RB (2006) The effects of memory load and stimulus relevance on the EEG during a visual selective search task: an ERP and ERD/ERS study. Clin Neurophysiol 117:871–884CrossRefPubMedGoogle Scholar
  22. Hebert R, Lehmann D (1977) Theta bursts: an EEG pattern in normal subjects practicing the Transcendental Meditation technique. Electroencephalogr Clin Neurophysiol 42:397–405. doi: 10.1016/0013-4694(77)90176-6 CrossRefPubMedGoogle Scholar
  23. Holzel BK, Ott U, Hempel H, Hackl A, Wolf K, Stark R, Vaitl D (2007) Differential engagement of anterior cingulated and adjacent medial frontal cortex in adept meditators and non-meditators. Neurosci Lett 421:16–21. doi: 10.1016/j.neulet.2007.04.074 CrossRefPubMedGoogle Scholar
  24. Jacobs GD, Lubar JF (1989) Spectral analysis of the central nervous system effects of the relaxation response elicited by autogenic training. Behav Med 15:125–132PubMedGoogle Scholar
  25. Jacobs J, Hwang G, Curran T, Kahana MJ (2006) EEG oscillations and recognition memory: theta correlates of memory retrieval and decision making. Neuroimage 32:978–987. doi: 10.1016/j.neuroimage.2006.02.018 CrossRefPubMedGoogle Scholar
  26. Jensen O, Tesche CD (2002) Frontal theta activity in humans increases with memory load in a working memory task. Eur J Neurosci 15:1395–1399CrossRefPubMedGoogle Scholar
  27. Jha AP, Krompinger J, Baime MJ (2007) Mindfulness of training modifies subsystems of attention. Cogn Affect Behav Neurosci 7:109–119. doi: 10.3758/CABN.7.2.109 CrossRefPubMedGoogle Scholar
  28. Khare KC, Nigam SK (2000) A study of electroencephalogram in meditators. Indian J Physiol Pharmacol 44:173–178PubMedGoogle Scholar
  29. Klimesch W (1999) EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis. Brain Res Brain Res Rev 29:169–195. doi: 10.1016/S0165-0173(98)00056-3 CrossRefPubMedGoogle Scholar
  30. Krause CM, Sillanmaki L, Koivisto M, Saarela C, Haggqvist A, Laine M, Hamalainen H (2000) The effects of memory load on event-related EEG desynchronization and synchronization. Clin Neurophysiol 111:2071–2078CrossRefPubMedGoogle Scholar
  31. Kwon JS, Hahm BJ, Rhi BY (1996) EEG changes during “Danhak” (Korean traditional meditation). In: Ogura C, Koga Y, Shimokochi M (eds) Recent advances in event-related potential research. Elsevier, AmsterdamGoogle Scholar
  32. Lehmann D, Faber PL, Achermann P, Jeanmonod D, Gianotti LR, Pizzagalli D (2001) Brain sources of EEG gamma frequency during volitionally meditation-induced, altered states of consciousness, and experience of the self. Psychiatry Res 108:111–121. doi: 10.1016/S0925-4927(01)00116-0 CrossRefPubMedGoogle Scholar
  33. Makeig S, Delorme A, Westerfield M, Jung TP, Townsend J, Courchesne E, Sejnowski TJ (2004) Electroencephalographic brain dynamics following manually responded visual targets. PLoS Biol 2:747–762. doi: 10.1371/journal.pbio.0020176 CrossRefGoogle Scholar
  34. Onton J, Delorme A, Makeig S (2005) Frontal midline EEG dynamics during working memory. Neuroimage 27:341–356CrossRefPubMedGoogle Scholar
  35. Pagano RR, Warrenburg S (1983) Meditation: in search of a unique effect. In: Davidson RJ, Schwartz GE, Shapiro D (eds) Consciousness and self-regulation, vol 3. Plenum Press, New York, pp 152–210Google Scholar
  36. Pan W, Zhang L, Xia Y (1994) The difference in EEG theta waves between concentrative and non-concentrative qigong states: power spectrum and topographic mapping study. J Tradit Chin Med 14:212–218PubMedGoogle Scholar
  37. Pennekamp P, Bosel R, Mecklinger A, Ott H (1994) Differences in EEG theta for responded and omitted targets in a sustained attention task. J Psychophysiol 8:131–141Google Scholar
  38. Raghavachari S, Kahana MJ, Rizzuto DS, Caplan JB, Kirschen MP, Bourgeois B et al (2001) Gating of human theta oscillations by a working memory task. J Neurosci 21:3175–3183PubMedGoogle Scholar
  39. Sauseng P, Hoppe J, Klimesch W, Gerloff C, Hummel FC (2007) Dissociation of sustained attention from central executive functions: local activity and interregional connectivity in the theta range. Eur J NeuroSci 25:587–593. doi: 10.1111/j.1460-9568.2006.05286.x CrossRefPubMedGoogle Scholar
  40. Schack B, Weiss S (2005) Quantification of phase synchronization phenomena and their importance for verbal memory processes. Biol Cybern 92:275–287CrossRefPubMedGoogle Scholar
  41. Schack B, Klimesch W, Sauseng P (2005) Phase synchronization between theta and upper alpha oscillations in a working memory task. Int J Psychophysiol 57:105–114CrossRefPubMedGoogle Scholar
  42. Singer W (1999) Neural synchrony: a versatile code for the definitions of relations? Neuron 24:49–65. doi: 10.1016/S0896-6273(00)80821-1 CrossRefPubMedGoogle Scholar
  43. Slagter HA, Lutz A, Greischar LL, Francis AD, Nieuwenhuis S, Davis JM, Davidson RJ (2007) Mental training affects distribution of limited brain resources. PLoS Biol 5(6):e138. doi: 10.1371/journal.pbio.0050138
  44. Srinivasan N, Baijal S (2007) Concentrative meditation enhances preattentive processing: a mismatch negativity study. Neuroreport 18:1709–1712CrossRefPubMedGoogle Scholar
  45. Tang YY, Ma Y, Wang J, Fan Y, Feng S, Lu Q, Yu Q, Sui D, Rothbart MK, Fan M, Posner MI (2007) Short-term meditation training improves attention and self-regulation. Proc Natl Acad Sci USA 104:17152–17156. doi: 10.1073/pnas.0707678104 CrossRefPubMedGoogle Scholar
  46. Travis F (1991) Eyes open and TM EEG patterns after one and eight years of TM practice. Psychophysiology 28:58Google Scholar
  47. Travis F (2001) Autonomic and EEG patterns distinguish transcending from other experiences during Transcendental Meditation practice. Int J Psychophysiol 42:1–9. doi: 10.1016/S0167-8760(01)00143-X CrossRefPubMedGoogle Scholar
  48. Travis F, Wallace RK (1999) Autonomic and EEG patterns during eyes-closed rest and Transcendental Meditation (TM) practice: the basis for a neural model of TM practice. Conscious Cogn 8:302–318. doi: 10.1006/ccog.1999.0403 CrossRefPubMedGoogle Scholar
  49. Travis F, Tecce JJ, Guttman J (2000) Cortical plasticity, contingent negative variation, and transcendent experiences during practice of the Transcendental Meditation technique. Biol Psychol 55:41–55. doi: 10.1016/S0301-0511(00)00063-6 CrossRefPubMedGoogle Scholar
  50. Travis F, Tecce J, Arenander A, Wallace RK (2002) Patterns of EEG coherence, power, and contingent negative variation characterize the integration of transcendental and waking states. Biol Psychol 61:293–319. doi: 10.1016/S0301-0511(02)00048-0 CrossRefPubMedGoogle Scholar
  51. Travis F, Haaga D, Haaga J, Tanner M, Arenander A, Nidich S, King C, Grosswald S, Rainforth M, Schneider R. A self-referential default brain state: patterns of coherence, power, and eLORETA sources during eyes-closed rest and the Transcendental Meditation practice. Cogn Process (under review)Google Scholar
  52. Wallace RK (1970) Physiological effects of Transcendental Meditation. Science 167:1751–1754. doi: 10.1126/science.167.3926.1751 CrossRefPubMedGoogle Scholar
  53. Weiss S, Müller HM, Rappelsberger P (2000) Theta synchronisation predicts efficient memory encoding of concrete and abstract nouns. Neuroreport 11:2357–2361CrossRefPubMedGoogle Scholar

Copyright information

© Marta Olivetti Belardinelli and Springer-Verlag 2009

Authors and Affiliations

  1. 1.Centre of Behavioral and Cognitive SciencesUniversity of AllahabadAllahabadIndia

Personalised recommendations