Cognitive Processing

, 10:175 | Cite as

Human factors in GIScience laboratory at the Pennsylvania State University

Laboratory Note

Abstract

The human factors in GIScience Laboratory (Human Factors Lab) of The Pennsylvania State University’s Department of Geography is located in University Park, PA (USA). University Park and bordering State College, PA are found in the heart of PA between the cities of New York City, NY, Philadelphia, PA, and Pittsburgh, PA. The laboratory is directed by Dr. Alexander Klippel and is part of the GeoVISTA Center. The Human Factors Lab contributes to Penn State Geography’s strong tradition as a leader in research on map perception, spatial cognition, and behavior in spatial environments. This report focuses upon basic research topics in spatial cognition, including: (1) perceptual and cognitive factors in map symbolization and design, (2) the creation of cognitively ergonomic route directions for next generation location based services (LBS), (3) You-Are-Here maps and the creation of a sense of place through map-like representations, (4) the conceptualization and representation of dynamic phenomena (i.e., geographic movement pattern), and (5) the relationship between linguistic and non-linguistic conceptualization.

Keywords

Spatial cognition GIScience Human factors Map design Movement patterns 

References

  1. Allen G (2000) Principles and practices for communicating route knowledge. Appl Cogn Psychol 14(4):333–359. doi:10.1002/1099-0720(200007/08)14:4<333::AID-ACP655>3.0.CO;2-CCrossRefGoogle Scholar
  2. Aretz AJ, Wickens CD (1992) The mental rotation of map displays. Hum Perform 5(4):303–328. doi:10.1207/s15327043hup0504_3 CrossRefGoogle Scholar
  3. Aubrey J, Li K, Dobbs AR (1994) Age differences in the interpretation of misaligned “you-are-here” maps. J Gerontol 49(1):29–31Google Scholar
  4. Brunet R (1987) La carte, mode d’emploi. Fayard-Reclus, ParisGoogle Scholar
  5. Caduff D, Timpf S (2008) On the assessment of landmark salience for human navigation. Cogn Process 9(4):249–267. doi:10.1007/s10339-007-0199-2 PubMedCrossRefGoogle Scholar
  6. Chambers JM, Cleveland WS, Kleiner B, Tukey PA (1983) Graphical methods for data analysis. The Wadsworth & Brooks/Cole statistics/probability series. Wadsworth, BelmontGoogle Scholar
  7. Chen C (2008) An information-theoretic view of visual analytics. IEEE Comput Graph Appl 28(1):18–23. doi:10.1109/MCG.2008.2 PubMedCrossRefGoogle Scholar
  8. Chernoff H (1973) The use of faces to represent points in k-dimensional space graphically. J Am Stat Assoc 68:361–368. doi:10.2307/2284077 CrossRefGoogle Scholar
  9. Chernoff H, Rizvi MH (1975) Effect on classification error of random permutations of features in representing multivariate data by faces. J Am Stat Assoc 70(351):548–554. doi:10.2307/2285931 CrossRefGoogle Scholar
  10. Crawford LE, Regier T, Huttenlocher J (2000) Linguistic and non- linguistic spatial categorization. Cognition 75(3):209–235. doi:10.1016/S0010-0277(00)00064-0 PubMedCrossRefGoogle Scholar
  11. Duckham M, Kulik L (2003) “Simplest” paths: automated route selection for navigation. In: Kuhn W, Worboys M, Timpf S (eds) Proceedings on spatial information theory: foundations of geographic information Science: International Conference, COSIT 2003, Ittingen, Switzerland, 2–4 September 2003, Springer, Berlin, pp 182–199Google Scholar
  12. Egenhofer MJ, Al-Taha KK (1992) Reasoning about gradual changes of topological relationships. In: Frank AU, Campari I, Formentini U (eds) Theories and methods of spatio-temporal reasoning in geographic space, theories and methods of spatio-temporal reasoning in geographic space. Springer, Berlin, pp 196–219Google Scholar
  13. Fabrikant SI, Montello DR, Mark DM (2006) The distance-similarity metaphor in region-display spatializations. IEEE Comput Graph Appl 26:34–44. doi:10.1109/MCG.2006.90 PubMedCrossRefGoogle Scholar
  14. Furlan A, Baldwin T, Klippel A (2007) Landmark classification for route description generation. In: Proceedings of the Fourth ACL-SIGSEM Workshop on Prepositions, Prague, pp 9–16Google Scholar
  15. Gehrke J, Hommel B (1998) The impact of exogenous factors on spatial coding in perception and memory. In: Freksa C, Habel C, Wender KF (eds) Spatial cognition: an interdisciplinary approach to representing and processing spatial knowledge. Springer, Berlin, pp 64–77Google Scholar
  16. Golledge RG (ed) (1999) Wayfinding behavior: cognitive mapping and other spatial processes. John Hopkins University Press, BaltimoreGoogle Scholar
  17. Gumperz JJ, Levinson SC (eds) (1996) Rethinking linguistic relativity. Cambridge University Press, CambridgeGoogle Scholar
  18. Hansen S, Richter K-F, Klippel A (2006) Landmarks in OpenLS: a data structure for cognitive ergonomic route directions. In: Raubal M, Miller H, Frank AU, Goodchild MF (eds) GIScience 2006. Springer, Berlin, pp 128–144Google Scholar
  19. Hardisty F (2005) The GeoViz toolkit: Auto-Carto, Las Vegas, NV, 20–23 March 2005Google Scholar
  20. Hoffman DD, Singh M (1997) Salience of visual parts. Cognition 63:29–78. doi:10.1016/S0010-0277(96)00791-3 PubMedCrossRefGoogle Scholar
  21. Hommel B, Gehrke J, Knuf L (2000) Hierarchical coding in the perception and memory of spatial layouts. Psychol Res 64:1–10. doi:10.1007/s004260000032 PubMedCrossRefGoogle Scholar
  22. Hulleman J, te Winkel W, Boselie F (2000) Concavities as basic features in visual search: Evidence from search asummetries. Percept Psychophys 62(1):162–174PubMedGoogle Scholar
  23. January D, Kako E (2007) Re-evaluating evidence for linguistic relativity: reply to Boroditsky (2001). Cognition 104:417–426. doi:10.1016/j.cognition.2006.07.008 PubMedCrossRefGoogle Scholar
  24. Klippel A (2003). Wayfinding Choremes. In: Kuhn W, Worboys M, Timpf S (eds) Proceedings on spatial information theory: foundations of geographic information science: international conference, COSIT 2003, Ittingen, Switzerland, 24–28 September 2003. Springer, Berlin, pp 320–334Google Scholar
  25. Klippel A, Montello DR (2007). Linguistic and nonlinguistic turn direction concepts. In: Winter S, Kuipers B, Duckham M, Kulik L (eds) Proceedings on spatial information theory: 9th international conference, COSIT 2007, Melbourne, 19–23 September 2007. Spronger, Berlin, pp 354–372Google Scholar
  26. Klippel A, Tappe H, Habel C (2003) Pictorial representations of routes: Chunking route segments during comprehension. In: Freksa C, Brauer W, Habel C, Wender KF (eds) Spatial cognition III: routes and navigation, human memory and learning, spatial representation and spatial learning. Springer, BerlinGoogle Scholar
  27. Klippel A, Knuf L, Hommel B, Freksa C (2005a) Perceptually induced distortions in cognitive maps. In: Freksa C, Knauff M, Krieg-Brückner B, Nebel B, Barkowsky T (eds) Spatial cognition IV. Reasoning, action, interaction: international spatial cognition 2004, Frauenchiemsee, Germany, 11–13 October 2004. Springer, Berlin, pp 204–213Google Scholar
  28. Klippel A, Tappe H, Kulik L, Lee PU (2005b) Wayfinding choremes—a language for modeling conceptual route knowledge. J Vis Languages Comput 16(4):311–329. doi:10.1016/j.jvlc.2004.11.004 CrossRefGoogle Scholar
  29. Klippel A, Freksa C, Winter S (2006) You-are-here maps in emergencies—the danger of getting lost. J Spat Sci 51(1):117–131Google Scholar
  30. Klippel A, MacEachren AM, Mitra P, Turton I, Jaiswal A, Soon K et al (2008a). Wayfinding choremes 2.0: conceptual primitives as a basis for translating natural into formal language. In: van der Weghe N, Billen R, Kuijpers B, Bogaert P (eds) Moving objects: from natural to formal kanguage. Workshop held in conjunction with GIScience 2008, Park CityGoogle Scholar
  31. Klippel A, Worboys M, Duckham M (2008b) Identifying factors of geographic event conceptualisation. Int J Geogr Inf Sci 22(2):183–204. doi:10.1080/13658810701405607 CrossRefGoogle Scholar
  32. Klippel A, Hansen S, Richter K-F, Winter S (2009a) Urban granularities—a data structure for cognitively ergonomic route directions. GeoInformatica. doi:10.1007/s10707-008-0051-6
  33. Klippel A, Hardisty F, Weaver C (2009b) Star plots: how shape characteristics influence classification tasks. Cartography and Geographic Information Science (to appear)Google Scholar
  34. Klippel A, Tenbrink T, Montello DR (2009c) The role of structure and function in the conceptualization of directions. In: van der Zee E, Vulchanova M (eds) Motion encoding in language and space, motion encoding in language and space. Oxford University Press, Oxford (to appear)Google Scholar
  35. Lee PU, Klippel A (2005) Dynamic aspects of spatial information in air traffic controller displays. In: Barkowsky T, Freksa C, Hegarty M, Lowe R (eds) Reasoning with mental and external diagrams: computational modeling and spatial assistance. AAAI Press, Stanford, pp 18–23Google Scholar
  36. Lee PU, Klippel A, Tappe H (2003) The effect of motion in graphical user interfaces: Smart Graphics. In: In: Butz A, Krüger A, Olivier P (eds) Third international symposium, SG 2003, vol 2733, Heidelberg, 2–4 July 2003. Lecture Notes in Computer Science, pp 12–21. Springer, BerlinGoogle Scholar
  37. Levine M (1982) You-are-here maps—Psychological considerations. Environ Behav 14(2):221–237. doi:10.1177/0013916584142006 CrossRefGoogle Scholar
  38. Liben LS, Downs RM (1993) Understanding person—space-map relations: cartographic and developmental perspektives. Dev Psychol 29(4):739–752. doi:10.1037/0012-1649.29.4.739 CrossRefGoogle Scholar
  39. Lovelace K, Hegarty M, Montello DR (1999) Elements of good route directions in familiar and unfamiliar environments: spatial information theory. In: Freksa C, Mark DM (eds) Cognitive and computational foundations of geographic information science. Springer, Berlin, pp. 65–82Google Scholar
  40. Lynch K (1960) The image of the city. MIT Press, CambridgeGoogle Scholar
  41. Mabrouk, M. (2005) OpenGis Location Services (OpenLS): Core Services. OGC Implementation Specification 05–016 Version 1.1 Open Gis Consortium IncGoogle Scholar
  42. MacEachren AM (1992) Learning spatial information from maps: Can orientation-specificity be overcome? Prof Geogr 44(4):431–443. doi:10.1111/j.0033-0124.1992.00431.x CrossRefGoogle Scholar
  43. MacEachren AM (1995) How maps work: representation, visualization, and design. The Guilford Press, New YorkGoogle Scholar
  44. MacEachren AM, Cai G (2006) Supporting group work in crisis management: visually mediated human-GIS-human dialogue. Environ Plann B Plann Des 33:435–456. doi:10.1068/b3188 CrossRefGoogle Scholar
  45. MacEachren AM, Brewer CA, Pickle L (1998) Visualizing georeferenced data: representing reliability of health statistics. Environ Plan A 30:1547–1561. doi:10.1068/a301547 CrossRefGoogle Scholar
  46. Mark DM (1986) Automated route selection for navigation. IEEE Aerosp Electron Syst Mag 1:2–5CrossRefGoogle Scholar
  47. McKenzie G, Klippel A, Bishop I You-are-here maps: the interaction of landmarks and map alignment (submitted)Google Scholar
  48. McNamara TP, Ratcliff R, McKoon G (1984) The mental representation of knowledge acquired from maps. J Exp Psychol 10(4):723–732Google Scholar
  49. Monmonier M (1999) How to lie with maps, 2nd edn. University of Chicago Press, ChicagoGoogle Scholar
  50. Montello DR (1998) A new framework for understanding the acquisition of spatial knowledge in large-scale environments. In: Egenhofer MJ, Golledge RG (eds) Spatial and temporal reasoning in geographic information, spatial and temporal reasoning in geographic information. Oxford University Press, New York, pp 143–154Google Scholar
  51. Palmer SE (1999) Vision science: photons to phenomenology. A Bradford book. MIT Press, CambridgeGoogle Scholar
  52. Peng W, Ward MO, Rundensteiner EA (2004) Clutter reduction in multi-dimensional data visualization using dimension reordering. In Proceedings of 2004 IEEE symposium on information visualization. IEEE Computer Society, Los AlamitosGoogle Scholar
  53. Randell DA, Cui Z, Cohn AG (1992) A spatial logic based on regions and connections. In: Proceedings 3rd international conference on knowledge representation and reasoning. Morgan Kaufmann, San Francisco, pp 165–176Google Scholar
  54. Regier T, Zheng M (2007) Attention to endpoints: a cross-linguistic constraint on spatial meaning. Cogn Sci 31(4):705–719Google Scholar
  55. Richter K-F, Klippel A (2005) A model for context-specific route directions. In: Freksa C, Knauff M, Krieg-Brückner B, Nebel B, Barkowsky T (eds) Spatial cognition IV. reasoning, action, interaction: international spatial cognition 2004, Frauenchiemsee, Germany, 11–13 October 2004, Revised Selected Papers. Springer, Berlin, pp 58–78Google Scholar
  56. Scaife M, Rogers Y (1996) External cognition: how do graphical representations work? Int J Hum Comput Stud 45:185–213. doi:10.1006/ijhc.1996.0048 CrossRefGoogle Scholar
  57. Slobin DI (1996) From “thought and language” to “thinking for speaking”. In: Gumperz JJ, Levinson SC (eds) Rethinking linguistic relativity, Rethinking linguistic relativity. Cambridge University Press, Cambridge, pp 70–96Google Scholar
  58. Sorrows M, Hirtle SC (1999) The nature of landmarks for real and electronic spaces. In: Freksa C, Mark DM (eds) Spatial information theory. Cognitive and computational foundations of geographic information science. Springer, Berlin, pp 37–50CrossRefGoogle Scholar
  59. Srinivas S, Hirtle SC (2007) Knowledge based schematization of route directions. In: Barkowsky T, Knauff M, Ligozat G, Montello DR (eds) Spatial cognition V: reasoning, action, interaction, spatial cognition V. Reasoning, action, interaction. Springer, BerlinGoogle Scholar

Copyright information

© Marta Olivetti Belardinelli and Springer-Verlag 2009

Authors and Affiliations

  1. 1.Department of Geography, GeoVISTA CenterThe Pennsylvania State UniversityUniversity ParkUSA

Personalised recommendations