Cognitive Processing

, 10:55 | Cite as

Multimodal encoding in a simplified model of intracellular calcium signaling

  • Maurizio De Pittà
  • Vladislav Volman
  • Herbert Levine
  • Eshel Ben-JacobEmail author
Research Report


Many cells use calcium signaling to carry information from the extracellular side of the plasma membrane to targets in their interior. Since virtually all cells employ a network of biochemical reactions for Ca2+ signaling, much effort has been devoted to understand the functional role of Ca2+ responses and to decipher how their complex dynamics is regulated by the biochemical network of Ca2+-related signal transduction pathways. Experimental observations show that Ca2+ signals in response to external stimuli encode information via frequency modulation (FM) or alternatively via amplitude modulation (AM). Although minimal models can capture separately both types of dynamics, they fail to exhibit different and more advanced encoding modes. By arguments of bifurcation theory, we propose instead that under some biophysical conditions more complex modes of information encoding can also be manifested by minimal models. We consider the minimal model of Li and Rinzel and show that information encoding can occur by AM of Ca2+ oscillations, by FM or by both modes (AFM). Our work is motivated by calcium signaling in astrocytes, the predominant type of cortical glial cells that is nowadays recognized to play a crucial role in the regulation of neuronal activity and information processing of the brain. We explain that our results can be crucial for a better understanding of synaptic information transfer. Furthermore, our results might also be important for better insight on other examples of physiological processes regulated by Ca2+ signaling.


Calcium Information encoding Astrocyte Bifurcation Li-Rinzel 



The authors thank V. Parpura, G. Carmignoto, B. Ermentrout, B. Sautois and N. Raichman for insightful conversations on Ca2+ dynamics and its capability of encoding information. V. Volman acknowledges the support of U.S. National Science Foundation I2CAM International Materials Institute Award, grant DMR-0645461. This research has been supported by the Tauber Fund at Tel Aviv University, by the Maguy-Glass Chair in Physics of Complex Systems, and by he NSF-sponsored Center for Theoretical Biological Physics (grant nos. PHY-0216576 and PHY-0225630).


  1. Araque A, Parpura V, Sanzgiri RP, Haydon PG (1998) Glutamate-dependent astrocyte modulation of synaptic transmission between cultured hippocampal neurons. Eur J NeuroSci 10:2129–2142. doi: 10.1046/j.1460-9568.1998.00221.x PubMedCrossRefGoogle Scholar
  2. Berridge MJ (1997) The AM and FM of calcium signaling. Nature 389:759–760. doi: 10.1038/386759a0 CrossRefGoogle Scholar
  3. Berridge MJ, Lipp P, Bootman MD (2000) The versatility and universality of calcium signalling. Nat Rev Mol Cell Biol 1:11–21. doi: 10.1038/35036035 PubMedCrossRefGoogle Scholar
  4. Bezprozvanny I, Watras J, Ehrlich BE (1991) Bell-shaped calcium-response curves of Ins(1, 4, 5)P3- and calcium-gated channels from endoplasmic reticulum of cerebellum. Nature 351:751–754. doi: 10.1038/351751a0 PubMedCrossRefGoogle Scholar
  5. Bezzi P, Gundersen V, Galbete JL, Seifert G, SteinhÄauser C, Pilati E, Volterra A (2004) Astrocytes contain a vesicular compartment that is competent for regulated exocytosis of glutamate. Nat Neurosci 7:613–620. doi: 10.1038/nn1246 PubMedCrossRefGoogle Scholar
  6. Callamaras N, Parker I (2000) Phasic characteristic of elementary Ca2+ release sites underlies quantal response to IP3. EMBO J 19:3608–3617. doi: 10.1093/emboj/19.14.3608 PubMedCrossRefGoogle Scholar
  7. Carmignoto G (2000) Reciprocal communication systems between astrocytes and neurones. Prog Neurobiol 62:561–581. doi: 10.1016/S0301-0082(00)00029-0 PubMedCrossRefGoogle Scholar
  8. Charles A (1998) Intercellular calcium waves in glia. Glia 24(1):39–49. doi:10.1002/(SICI)1098-1136(199809)24:1<39::AID-GLIA5>3.0.CO;2-WPubMedCrossRefGoogle Scholar
  9. Cornell-Bell AH, Finkbeiner SM, Cooper MS, Smith SJ (1990) Glutamate induces calcium waves in cultured astrocytes: long-range glial signaling. Science 247:470–473. doi: 10.1126/science.1967852 PubMedCrossRefGoogle Scholar
  10. Dani JW, Chernjavsky A, Smith SJ (1992) Neuronal activity triggers calcium waves in hippocampal astrocyte networks. Neuron 8:429–440. doi: 10.1016/0896-6273(92)90271-E PubMedCrossRefGoogle Scholar
  11. De Pittà M, Volman V, Levine H, Pioggia G, De Rossi D, Ben-Jacob E (2008) Coexistence of amplitude and frequency modulations in intracellular calcium dynamics. Phys Rev E Stat Nonlin Soft Matter Phys 77:030903. doi: 10.1103/PhysRevE.77.030903 PubMedGoogle Scholar
  12. De Young GW, Keizer J (1992) A single-pool inositol 1, 4, 5-trisphosphate-receptor-based model for agonist-stimulated oscillations in Ca2+ concentration. Proc Natl Acad Sci USA 89:9895–9899. doi: 10.1073/pnas.89.20.9895 PubMedCrossRefGoogle Scholar
  13. Dupont G, Goldbeter A (1998) CaM kinase II as frequency decoder of Ca2+ oscillations. Bioessays 20:607–610. doi:10.1002/(SICI)1521-1878(199808)20:8<607::AID-BIES2>3.0.CO;2-FPubMedCrossRefGoogle Scholar
  14. Edelstein-Keshet L (1988) Mathematical models in biology, 1st edn. The Random House, New YorkGoogle Scholar
  15. Falcke M (2004) Reading the patterns in living cells—the physics of Ca2+ signaling. Adv Phys 53:255–440. doi: 10.1080/00018730410001703159 CrossRefGoogle Scholar
  16. Finkbeiner SM (1993) Glial calcium. Glia 9:83–104. doi: 10.1002/glia.440090202 PubMedCrossRefGoogle Scholar
  17. Guckenheimer G, Holmes P (1986) Nonlinear oscillations, dynamical systems, and bifurcations of vector fields, 2nd edn. Springer, New YorkGoogle Scholar
  18. Hille B (2001) Ion channels of excitable membranes, 3rd edn. Sinauer Associates, Inc, SunderlandGoogle Scholar
  19. Hulata E, Baruchi I, Segev R, Shapira Y, Ben-Jacob E (2004) Self-regulated complexity in cultured neuronal networks. Phys Rev Lett 92:198105. doi: 10.1103/PhysRevLett.92.198105 PubMedCrossRefGoogle Scholar
  20. Hulata E, Volman V, Ben-Jacob E (2005) Self-regulated complexity in neural networks. Nat Comput 4:363–386. doi: 10.1007/s11047-005-3668-5 CrossRefGoogle Scholar
  21. Izhikevich EM (2007) Dynamical systems in neuroscience: the geometry of excitability and bursting. The MIT Press, CambridgeGoogle Scholar
  22. Kuznetsov Y (1998) Elements of applied bifurcation theory, 2nd edn. Springer, New YorkGoogle Scholar
  23. Li Y, Rinzel J (1994) Equations for InsP3 receptor-mediated [Ca2+]i oscillations derived from a detailed kinetic model: a Hodgkin-Hhuxley like formalism. J Theor Biol 166:461–473. doi: 10.1006/jtbi.1994.1041 PubMedCrossRefGoogle Scholar
  24. Luo H, Wang Y, Poeppel D, Simon J (2006) Concurrent encoding of frequency and amplitude modulation in human auditory cortex: MEG evidence. J Neurophysiol 96:2712–2723. doi: 10.1152/jn.01256.2005 PubMedCrossRefGoogle Scholar
  25. Lytton J, Westlin M, Burk SE, Shull GW, MacLennan DH (1992) Functional comparisons between isoforms of the sarcoplasmic or endoplasmic reticulum of calcium pumps. J Biol Chem 267:14483–14489PubMedGoogle Scholar
  26. Mishra J, Bhalla US (2002) Simulations of inositol phosphate metabolism and its interaction with InsP3-mediated calcium release. Biophys J 83:1298–1316PubMedCrossRefGoogle Scholar
  27. Nadkarni S, Jung P (2003) Spontaneous oscillations of dressed neurons: a new mechanism for epilepsy? Phys Rev Lett 91:268101. doi: 10.1103/PhysRevLett.91.268101 PubMedCrossRefGoogle Scholar
  28. Nadkarni S, Jung P (2007) Modeling synaptic transmission of the tripartite synapse. Phys Biol 4:1–9. doi: 10.1088/1478-3975/4/1/001 PubMedCrossRefGoogle Scholar
  29. Nadkarni S, Jung P, Levine H (2008) Astrocytes optimize the synaptic transmission of information. PLoS Comput Biol 4:e1000088. doi: 10.1371/journal.pcbi.1000088 PubMedCrossRefGoogle Scholar
  30. Nett WJ, Oloff SH, McCarthy KD (2002) Hippocampal astrocytes in situ exhibit calcium oscillations that occur independent of neuronal activity. J Neurophysiol 87:528–537PubMedGoogle Scholar
  31. Ono N, Abe M, Ando S (1999) AM-FM extraction based on logarithmic differential decomposition. 1999 IEEE 3rd Workshop on Multimedia Signal Processing, pp. 233–238. doi: 10.1109/MMSP.1999.793838
  32. Parpura V (2004) Glutamate-mediated bi-directional signaling between neurons and astrocytes. In: Hatton GI, Parpura V (eds) Glial-neuronal signaling. Kluwer Academic Publisher, Boston, pp 365–396Google Scholar
  33. Parpura V, Haydon PG (2000) Physiological astrocytic calcium levels stimulate glutamate release to modulate adjacent neurons. Proc Natl Acad Sci USA 97:8629–8634. doi: 10.1073/pnas.97.15.8629 PubMedCrossRefGoogle Scholar
  34. Parpura V, Basarsky TA, Liu F, Jeftinija K, Jeftinija S, Haydon PG (1994) Glutamate-mediated astrocte-neuron signalling. Nature 369:744–747. doi: 10.1038/369744a0 PubMedCrossRefGoogle Scholar
  35. Pasti L, Volterra A, Pozzan T, Carmignoto G (1997) Intracellular calcium oscillations in astrocytes: a highly plastic, bidirectional form of communication between neurons and astrocytes in situ. J Neurosci 17:7817–7830PubMedGoogle Scholar
  36. Perea G, Araque A (2005) Synaptic regulation of the astrocyte calcium signal. J Neural Transm 112:127–135. doi: 10.1007/s00702-004-0170-7 PubMedCrossRefGoogle Scholar
  37. Perko L (2001) Differential equations and dynamical systems, 3rd edn. Springer, New YorkGoogle Scholar
  38. Porter JT, McCarthy KD (1996) Hippocampal astrocytes in situ respond to glutamate released from synaptic terminals. J Neurosci 16:5073–5081PubMedGoogle Scholar
  39. Rinzel J, Ermentrout BG (1989) Analysis of neural excitability and oscillations. In: Koch C, Segev I (eds) Methods in neuronal modeling: from synapses to networks. The MIT Press, Cambridge, pp 135–170Google Scholar
  40. Sasha M, Dimitrijevic JC, van Roon P, Picton TW (2001) Multiple auditory steady-state responses to AM and FM stimuli. Audiol Neurootol 6:12–27. doi: 10.1159/000046805 CrossRefGoogle Scholar
  41. Segev R, Benveniste M, Hulata E, Cohen N, Palevski A, Kapon E, Shapira Y, Ben-Jacob E (2002) Long term behavior of lithographically prepared in vitro neuronal networks. Phys Rev Lett 88:118102. doi: 10.1103/PhysRevLett.88.118102 PubMedCrossRefGoogle Scholar
  42. Segev R, Baruchi I, Hulata E, Ben-Jacob E (2004) Hidden neuronal correlations in cultured networks. Phys Rev Lett 92:118102. doi: 10.1103/PhysRevLett.92.118102 PubMedCrossRefGoogle Scholar
  43. Shuai JW, Jung P (2003) Selection of intracellular calcium patterns in a model with clustered Ca2+ release channels. Phys Rev E Stat Nonlin Soft Matter Phys 67:031905. doi: 10.1103/PhysRevE.67.031905 PubMedGoogle Scholar
  44. Sneyd J, Charles AC, Sanderson MJ (1994) A model for the propagation of intracellular calcium waves. Am J Physiol 266:C293–C302PubMedGoogle Scholar
  45. Sneyd J, Wetton BTR, Charles AC, Sanderson MJ (1995) Intercellular calcium waves mediated by diffusion of inositol trisphosphate: a two-dimensional model. Am J Physiol 268:C1537–C1545PubMedGoogle Scholar
  46. Tang Y, Othmer HG (1995) Frequency encoding in excitable systems with applications to calcium oscllations. Proc Natl Acad Sci USA 92:7869–7873. doi: 10.1073/pnas.92.17.7869 PubMedCrossRefGoogle Scholar
  47. Toescu EC (1995) Temporal and spatial heterogenities of Ca2+ signaling: mechanisms and physiological roles. Am J Physiol 269:G173–G185PubMedGoogle Scholar
  48. Verkhratsky A, Kettenmann H (1996) Calcium signaling in glial cells. Trends Neurosci 19:346–352. doi: 10.1016/0166-2236(96)10048-5 PubMedCrossRefGoogle Scholar
  49. Volman V, Baruchi I, Persi E, Ben-Jacob E (2004) Generative modelling of regulated dynamical behavior in cultured neuronal networks. Physica A 335:249–278. doi: 10.1016/j.physa.2003.11.015 CrossRefGoogle Scholar
  50. Volman V, Ben-Jacob E, Levine H (2007a) The astrocyte as a gatekeeper of synaptic information transfer. Neural Comput 19:303–326. doi: 10.1162/neco.2007.19.2.303 PubMedCrossRefGoogle Scholar
  51. Volman V, Gerkin RC, Lau PM, Ben-Jacob E, Bi GQ (2007b) Calcium and synaptic dynamics underlying reverberatory activity in neuronal networks. Phys Biol 4:91–103. doi: 10.1088/1478-3975/4/2/003 PubMedCrossRefGoogle Scholar
  52. Volterra A, Meldolesi J (2005) Astrocytes, from brain glue to communication elements: the revolution continues. Nat Rev Neurosci 6:626–640. doi: 10.1038/nrn1722 PubMedCrossRefGoogle Scholar
  53. Wang X, Lou N, Xu Q, Tian GF, Peng WG, Han X, Kang J, Takano T, Nedergaard M (2006) Astrocytic Ca2+ signaling evoked by sensory stimulation in vivo. Nat Neurosci 9:816–823. doi: 10.1038/nn1703 PubMedCrossRefGoogle Scholar

Copyright information

© Marta Olivetti Belardinelli and Springer-Verlag 2008

Authors and Affiliations

  • Maurizio De Pittà
    • 1
  • Vladislav Volman
    • 2
    • 3
  • Herbert Levine
    • 2
  • Eshel Ben-Jacob
    • 1
    • 2
    Email author
  1. 1.School of Physics and AstronomyTel Aviv UniversityRamat AvivIsrael
  2. 2.Center for Theoretical Biological PhysicsLa JollaUSA
  3. 3.Computational Neurobiology LabThe Salk InstituteLa JollaUSA

Personalised recommendations