Advertisement

Cognitive Processing

, 9:239 | Cite as

Short-distance navigation in cephalopods: a review and synthesis

  • Christelle Alves
  • Jean G. Boal
  • Ludovic Dickel
Review

Abstract

This paper provides a short overview of the scientific knowledge concerning short-distance navigation in cephalopods. Studies in laboratory controlled conditions and observations in the field provide converging evidence that cephalopods use visual cues to navigate and demonstrate spatial memory. A recent study also provides the first evidence for the neural substrates underlying spatial abilities in cuttlefish. The functions of spatial cognition in cephalopods are discussed from an evolutionary standpoint.

Keywords

Invertebrates Comparative cognition Spatial learning Hippocampus 

Notes

Acknowledgments

The authors would like to thank Pr. Raymond Chichery for its helpful comments on the manuscript.

References

  1. Agin V, Chichery R, Chichery MP, Dickel L, Darmaillacq AS, Bellanger C (2006a) Behavioural plasticity and neural correlates in adult cuttlefish. Vie Milieu 56(2):81–87Google Scholar
  2. Agin V, Chichery R, Dickel L, Chichery MP (2006b) The “prawn-in-the-tube” procedure in the cuttlefish: habituation or passive avoidance learning? Learn Mem 13:97–101. doi: 10.1101/lm.90106 PubMedCrossRefGoogle Scholar
  3. Aitken JP, O’Dor RK, Jackson GD (2005) The secret life of the giant Australian cuttlefish Sepia apama (Cephalopoda): Behaviour and energetics in nature revealed through radio acoustic positioning and telemetry (RAPT). J Exp Mar Biol Ecol 320:77–91. doi: 10.1016/j.jembe.2004.12.040 CrossRefGoogle Scholar
  4. Altman JS (1967) The behaviour of Octopus vulgaris Lam. In its natural habitat: a pilot study. Underw Assoc rep 1966–1967, pp 77–83Google Scholar
  5. Alves C, Chichery R, Boal JG, Dickel L (2007) Orientation in the cuttlefish Sepia officinalis: response versus place learning. Anim Cogn 10:29–36. doi: 10.1007/s10071-006-0027-6 PubMedCrossRefGoogle Scholar
  6. Ambrose RF (1982) Shelter utilization by the molluscan cephalopod Octopus bimaculatus. Mar Ecol Prog Ser 7:67–73CrossRefGoogle Scholar
  7. Biederman GB, Davey VA (1993) Social learning in invertebrates. Sci 259:1627–1628. doi: 10.1126/science.259.5101.1627 CrossRefGoogle Scholar
  8. Birchall JD, Thomas NL (1983) On the architecture and function of cuttlefish bone. J Mater Sci 18(7):2081–2086CrossRefGoogle Scholar
  9. Boal JG (1996) A review of simultaneous visual discrimination as a method of training octopuses. Biol Rev 71(2):157–190PubMedCrossRefGoogle Scholar
  10. Boal JG (2006) Social recognition: a top down view of cephalopod behaviour. Vie Milieu 56(2):69–79Google Scholar
  11. Boal JG, Dunham AW, Williams KT, Hanlon RT (2000) Experimental evidence for spatial learning in octopuses (Octopus bimaculoides). J Comp Psychol 114(3):246–252. doi: 10.1037//0735-7036.114.3.246 PubMedCrossRefGoogle Scholar
  12. Boal JG, Golden DK (1999) Distance chemorecption in the common cuttlefish, Sepia officinalis (Mollusca, Cephalopoda). J Exp Mar Biol Ecol 235:307–317. doi: 10.1016/S0022-0981(98)00187-7 CrossRefGoogle Scholar
  13. Boletzky SV (1983) Sepia officinalis. In: Boyle PR (ed) Cephalopod life cycles. Species accounts, vol 1. Academic, London, pp 31–52Google Scholar
  14. Boyle PR (1983) Cephalopod life cycles. Species accounts, vol 1. Academic, LondonGoogle Scholar
  15. Boyle PR (1987) Cephalopod life cycles. Comparative reviews, vol 2. Academic, LondonGoogle Scholar
  16. Budelmann BU (1994) Cephalopod sense organs, nerves and the brain: adaptations for high performance and life style. Mar Fresh Behav Physiol 25:13–33Google Scholar
  17. Budelmann BU, Bleckmann H (1988) A lateral line analogue in cephalopods: water waves generate microphonic potentials in the epidermal head lines of Sepia and Lolliguncula. J Comp Physiol A 164:1–5. doi: 10.1007/BF00612711 PubMedCrossRefGoogle Scholar
  18. Cheng K, Spetch ML (1998) Mechanisms of landmark use in mammals and birds. In: Healy S (ed) Spatial representation in animals. Oxford University Press, Oxford, pp 1–17Google Scholar
  19. Cole PD, Adamo SA (2005) Cuttlefish (Sepia officinalis: Cephalopoda) hunting behavior and associative learning. Anim Cogn 8:27–30 doi: 10.1007/s10071-004-0228-9 PubMedCrossRefGoogle Scholar
  20. Collett TS, Dillmann E, Giger A, Wehner R (1992) Visual landmarks and route-following in desert ants. J Comp Physiol A 170:435–442CrossRefGoogle Scholar
  21. Darmaillacq AS, Dickel L, Chichery MP, Agin V, Chichery R (2004) Rapid taste aversion learning in adult cuttlefish, Sepia officinalis. Anim Behav 68:1291–1298. doi: 10.1016/j.anbehav.2004.01.015 CrossRefGoogle Scholar
  22. Darmaillacq AS, Chichery R, Dickel L (2006) Food imprinting, new evidence from the cuttlefish Sepia officinalis. Biol Lett 2:345–347. doi: 10.1098/rsbl.2006.0477 PubMedCrossRefGoogle Scholar
  23. Dickel L, Boal JG, Budelmann BU (2000) The effect of early experience on learning and memory in cuttlefish. Dev Psychobiol 36:101–110PubMedCrossRefGoogle Scholar
  24. Etienne AS, Maurer R, Séguinot V (1996) Path integration in mammals and its interaction with visual landmarks. J Exp Biol 199:201–209PubMedGoogle Scholar
  25. Fiorito G, Scotto P (1992) Observational learning in Octopus vulgaris. Science 256:545–547. doi: 10.1126/science.256.5056.545 PubMedCrossRefGoogle Scholar
  26. Forsythe JW, Hanlon RT (1997) Foraging and associated behavior by Octopus cyanea Gray, 1849 on a coral atoll, French Polynesia. J Exp Mar Biol Ecol 209:15–31. doi: 10.1016/S0022-0981(96)00057-3 CrossRefGoogle Scholar
  27. Gallistel CR (1993) The organization of learning. MIT, CambridgeGoogle Scholar
  28. Gibson BM, Shettleworth SJ (2005) Place versus response learning revisited: Tests of blocking on the radial maze. Behav Neurosci 119(2):567–586. doi: 10.1037/0735-7044.119.2.567 PubMedCrossRefGoogle Scholar
  29. Gilly WF, Lucero MT (1992) Behavioural responses to chemical stimulation of the olfactory organ in the squid, Loligo opalescens. J Exp Biol 162:209–229Google Scholar
  30. Graindorge N, Alves C, Darmaillacq AS, Chichery R, Dickel L, Bellanger C (2006) Effects of dorsal and ventral vertical lobe electrolytic lesions on spatial learning and locomotor activity in Sepia officinalis. Behav Neurosci 120(5):1151–1158. doi: 10.1037/0735-7044.120.5.1151 PubMedCrossRefGoogle Scholar
  31. Graziadei P (1964) Receptors in the sucker of the cuttlefish. Nature 203:384–386PubMedCrossRefGoogle Scholar
  32. Hall KC, Hanlon RT (2002) Principal features of the mating system of a large spawning aggregation of the giant Australian cuttlefish Sepia apama (Mollusca: Cephalopoda). Mar Biol 140:533–545. doi: 10.1007/s00227-001-0718-0 CrossRefGoogle Scholar
  33. Hanlon RT, Messenger JB (1988) Adaptive coloration in young cuttlefish (Sepia officinalis L.): the morphology and development of body patterns and their relation to behaviour. Phil Trans R Soc Lond B 320:437–487. doi: 10.1098/rstb.1988.0087 CrossRefGoogle Scholar
  34. Hanlon RT, Messenger JB (1996) Cephalopod behaviour. Cambridge University Press, CambridgeGoogle Scholar
  35. Hartwick EB, Ambrose RF, Robinson SMC (1984) Den utilization and the movements of tagged Octopus dofleini. Mar Behav Physiol 11:95–110Google Scholar
  36. Hartwick EB, Breen PA, Tulloch L (1978) A removal experiment with Octopus dofleini (Wulker). J Fish Res Board Can 35(11):1492–1495Google Scholar
  37. Hochner B, Brown ER, Langella M, Shomrat T, Fiorito G (2003) A learning and memory area in the octopus brain manifests a vertebrate-like long-term potentiation. J Neurophysiol 90:3547–3554. doi: 10.1152/jn.00645.2003 PubMedCrossRefGoogle Scholar
  38. Huffard CL (2007) Ethogram of Abdopus aculeatus (d’Orbigny, 1834) (Cephalopoda: Octopodidae): can behavioural characters inform octopodid taxonomy and systematics? J Molluscan Stud 73:185–193. doi: 10.1093/mollusc/eym015 CrossRefGoogle Scholar
  39. Hvorecny LM, Grudowski JL, Blakeslee CJ, Simmons TL, Roy PR, Brooks JA, Hanner RM, Beigel ME, Karson MA, Nichols RH, Holm JB, Boal JG (2007) Octopuses (Octopus bimaculoides) and cuttlefishes (Sepia pharaonis, S. officinalis) can conditionally discriminate. Anim Cogn. doi: 10.1007/s10071-007-0085-4
  40. Karson MA, Boal JG, Hanlon RT (2003) Experimental evidence for spatial learning in cuttlefish (Sepia officinalis). J Comp Psychol 117(2):149–155. doi: 10.1037/0735-7036.117.2.149 PubMedCrossRefGoogle Scholar
  41. Karson MA (2003) Simultaneous discrimination learning and its neural correlates in the cuttlefish Sepia officinalis (Cephalopoda: Mollusca). Doctoral dissertation. Michigan State University, East LansingGoogle Scholar
  42. Katsanevakis S, Verriopoulos G (2004) Den ecology of Octopus vulgaris Cuvier, 1797, on soft sediment: availability and types of shelter. Sci Mar 68(1):147–157CrossRefGoogle Scholar
  43. Layne JE, Barnes WJP, Duncan LMJ (2003) Mechanisms of homing in the fiddler crab Uca rapax. 2. Information sources and frame of reference for a path integration system. J Exp Biol 206:4425–4442. doi: 10.1242/jeb.00661 PubMedCrossRefGoogle Scholar
  44. Lee PG (1992) Chemotaxis by Octopus maya Voss et Solis in a Y-maze. J Exp Mar Biol Ecol 153:53–67. doi: 10.1016/0022-0981(92)90016-4 CrossRefGoogle Scholar
  45. Marshall NJ, Messenger JB (1996) Colour-blind camouflage. Nature 382:408–409CrossRefGoogle Scholar
  46. Mather JA (1982) Choice and competition: their effects on occupancy of shell homes by Octopus joubini. Mar Behav Physiol 8:285–293Google Scholar
  47. Mather JA (1986) Sand digging in Sepia officinalis: assessment of a cephalopod mollusc’s “fixed” behavior pattern. J Comp Psychol 100:315–320CrossRefGoogle Scholar
  48. Mather JA (1988) Daytime activity of juvenile Octopus vulgaris in Bermuda. Malacologia 29(1):69–76Google Scholar
  49. Mather JA (1991a) Navigation by spatial memory and use of visual landmarks in octopuses. J Comp Physiol A 168:491–497. doi: 10.1007/BF00199609 CrossRefGoogle Scholar
  50. Mather JA (1991b) Foraging, feeding and prey remains in middens of juvenile Octopus vulgaris (Mollusca: Cephalopoda). J Zool Lond 224:27–39Google Scholar
  51. Mather JA (1994) “Home” choice and modification by juvenile Octopus vulgaris (Mollusca: Cephalopoda): specialized intelligence and tool use? J Zool Lond 233:359–368Google Scholar
  52. Mather JA (1995) Cognition in cephalopods. Adv Study Behav 24:317–353CrossRefGoogle Scholar
  53. Mather JA, O’Dor RK (1991) Foraging strategies and predation risk shape the natural history of juvenile Octopus vulgaris. Bull Mar Sci 49:256–269Google Scholar
  54. Mather JA, Resler S, Cosgrove J (1985) Activity and movement patterns of Octopus dofleini. Mar Behav Physiol 11:301–314CrossRefGoogle Scholar
  55. Mäthger LM, Barbosa A, Miner S, Hanlon RT (2006) Color blindness and contrast perception in cuttlefish (Sepia officinalis) determined by a visual sensorimotor assay. Vis Res 46(11):1746–1753. doi: 10.1016/j.visres.2005.09.035 PubMedCrossRefGoogle Scholar
  56. Moody MF, Parriss JR (1960) Discrimination of polarized light by octopus. Nature 186:839–840PubMedCrossRefGoogle Scholar
  57. Nixon M, Young JZ (2003) The brains and lives of Cephalopods. Oxford University Press, OxfordGoogle Scholar
  58. Odling-Smee L, Braithwaite VA (2003) The influence of habitat stability on landmark use during spatial learning in the three-spined stickleback. Anim Behav 65:701–707. doi: 10.1006/anbe.2003.2082 CrossRefGoogle Scholar
  59. O’Dor RK, Webber DM (1986) The constraints on cephalopods: why squid aren’t fish. Can J Zool 64:1591–1605CrossRefGoogle Scholar
  60. O’Keefe J, Nadel L (1978) The hippocampus as a cognitive map. Oxford University Press, OxfordGoogle Scholar
  61. Packard A (1972) Cephalopods and fish: the limits of convergence. Biol Rev 47:241–307CrossRefGoogle Scholar
  62. Poirier R, Chichery R, Dickel L (2004) Effects of rearing conditions on sand digging efficiency in juvenile cuttlefish. Behav Proc 67:273–279. doi: 10.1016/j.beproc.2004.04.006 CrossRefGoogle Scholar
  63. Poirier R, Chichery R, Dickel L (2005) Early experience and postembryonic maturation of body patterns in cuttlefish (Sepia officinalis). J Comparat Psychol 119:230–237. doi: 10.1037/0735-7036.119.2.230 CrossRefGoogle Scholar
  64. Regolin L, Vallortigara G, Zanforlin M (1994) Perceptual and motivational aspects of detour behaviour in young chicks. Anim Behav 47:123–131. doi: 10.1006/anbe.1994.1014 CrossRefGoogle Scholar
  65. Restle F (1957) Discrimination of cues in mazes: a resolution of the “place-vs.-response” question. Psychol Rev 64:217-228PubMedCrossRefGoogle Scholar
  66. Sanders GD (1975) The Cephalopods. In: Corning WC, Dyal JA, Willows AOD (eds) Invertebrate learning, vol 3. Plenum, New York, pp 1–101Google Scholar
  67. Schiller PH (1949) Delayed detour response in the octopus. J Comp Physiol Psychol 42:220–225PubMedCrossRefGoogle Scholar
  68. Schmajuk NA, Thieme AD (1992) Purposive behavior and cognitive mapping: a neural network model. Biol Cybern 67:165–174. doi: 10.1007/BF00201023 PubMedCrossRefGoogle Scholar
  69. Shashar N, Hagan R, Boal JG, Hanlon RT (2000) Cuttlefish use polarization sensitivity in predation on silvery fish. Vis Res 40:71–75. doi: 10.1016/S0042-6989(99)00158-3 PubMedCrossRefGoogle Scholar
  70. Stephen PR, Young JZ (1982) The statocyst of Loligo. J Zool Lond 197:241–266Google Scholar
  71. Suboski MD, Muir D, Hall D (1993) Social learning in invertebrates. Sci 259:1628–1629. doi: 10.1126/science.259.5101.1628 CrossRefGoogle Scholar
  72. Tinbergen N (1963) On aims and methods of ethology. Z Tierpsychol 20:410–433Google Scholar
  73. Walker JJ, Longo N, Bitterman ME (1970) The octopus in the laboratory. Handling, maintenance, training. Behav Res Methods Instrum 2(1):15–18Google Scholar
  74. Ward PD, Bandel K (1987) Life history strategies in fossil cephalopods. In: Boyle PR (ed) Cephalopod life cycles. Comparative reviews, vol 2. Academic, New York, pp 329–420Google Scholar
  75. Wehner R (2003) Desert ant navigation: how miniature brains solve complex tasks. J Comp Physiol A 189:579–588. doi: 10.1007/s00359-003-0431-1 CrossRefGoogle Scholar
  76. Wells MJ (1964) Detour experiments with octopuses. J Exp Biol 41:621–642Google Scholar
  77. Wells MJ (1978) Octopus. Physiology and behaviour of an advanced invertebrate. Chapman and Hall Ltd, LondonGoogle Scholar
  78. Woodhams PL, Messenger JB (1974) A note on the ultrastructure of the octopus olfactory organ. Cell Tiss Res 152:253–258CrossRefGoogle Scholar
  79. Yarnall JL (1969) Aspects of the behaviour of Octopus cyanea Gray. Anim Behav 17:747–754CrossRefGoogle Scholar
  80. Young JZ (1960) The statocysts of Octopus vulgaris. Proc R Soc Lond 152:3–29Google Scholar
  81. Young JZ (1991) Computation in the learning system of Cephalopods. Biol Bull 180:200–208CrossRefGoogle Scholar
  82. Zucca P, Antonelli F, Vallortigara G (2005) Detour behaviour in three species of birds: quails (Coturnix sp.), herring gulls (Larus cachinnans) and canaries (Serinus canaria). Anim Cogn 8(2):122–128. doi: 10.1007/s10071-004-0243-x PubMedCrossRefGoogle Scholar

Copyright information

© Marta Olivetti Belardinelli and Springer-Verlag 2007

Authors and Affiliations

  • Christelle Alves
    • 1
    • 2
  • Jean G. Boal
    • 3
  • Ludovic Dickel
    • 1
    • 2
  1. 1.Laboratoire de Physiologie du Comportement des Céphalopodes, E.A. 3211Université de Caen Basse-NormandieCaen cedexFrance
  2. 2.Centre de Recherches en Environnement CôtierUniversité de CaenLuc-sur-MerFrance
  3. 3.Department of BiologyMillersville UniversityMillersvilleUSA

Personalised recommendations