Skip to main content
Log in

The supplementary motor area in motor and perceptual time processing: fMRI studies

  • Research Report
  • Published:
Cognitive Processing Aims and scope Submit manuscript

Abstract

The neural bases of timing mechanisms in the second-to-minute range are currently investigated using multidisciplinary approaches. This paper documents the involvement of the supplementary motor area (SMA) in the encoding of target durations by reporting convergent fMRI data from motor and perceptual timing tasks. Event-related fMRI was used in two temporal procedures, involving (1) the production of an accurate interval as compared to an accurate force, and (2) a dual-task of time and colour discrimination with parametric manipulation of the level of attention attributed to each parameter. The first study revealed greater activation of the SMA proper in skilful control of time compared to force. The second showed that increasing attentional allocation to time increased activity in a cortico-striatal network including the pre-SMA (in contrast with the occipital cortex for increasing attention to colour). Further, the SMA proper was sensitive to the attentional modulation cued prior to the time processing period. Taken together, these data and related literature suggest that the SMA plays a key role in time processing as part of the striato-cortical pathway previously identified by animal studies, human neuropsychology and neuroimaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Ackermann H, Gräber S, Hertrich I, Daum I (1999) Cerebellar contributions to the perception of temporal cues within the speech and nonspeech domain. Brain Lang 67:228–241

    Article  PubMed  CAS  Google Scholar 

  • Basso G, Nichelli P, Wharton CM, Peterson M, Grafman J (2003) Distributed neural systems for temporal production: a functional MRI study. Brain Res Bull 59(5):405–411

    Article  PubMed  Google Scholar 

  • Brown SW (1997) Attentional resources in timing: interference effects in concurrent temporal and nontemporal working memory tasks. Percept Psychoph 59:1118–1140

    CAS  Google Scholar 

  • Brunia CHM, de Jong BM, van den Berg-Lenssen MMC, Paans AMJ (2000) Visual feedback about time estimation is related to a right hemisphere activation measured by PET. Exp Brain Res 130:328–337

    Article  PubMed  CAS  Google Scholar 

  • Casini L, Macar F (1997) Effects of attention manipulation on perceived duration and intensity in the visual modality. Mem Cogn 2:912–818

    Google Scholar 

  • Cesara A, Hagberg GE, Bianciardi M, Sabatini U (2005) Visually cued motor synchronization: modulation of fMRI activation patterns by baseline condition. Neurosci Lett 373:323–337

    Google Scholar 

  • Coull J (2004) fMRI studies of temporal attention: allocating attention within, or towards, time. Cogn Brain Res 21:216–226

    Article  Google Scholar 

  • Coull JT, Vidal F, Nazarian B, Macar F (2004) Functional anatomy of the attentional modulation of time estimation. Science 303(5663):1506–1508

    Article  PubMed  CAS  Google Scholar 

  • Dettmers C, Fink GR, Lemon RN, Stephan KM, Passingham RE, Silbersweig D, Holmes A, Ridding MC, Brooks DJ, Frackowiak RSJ (1995) Relation between cerebral activity and force in the motor areas of the human brain. J Neurophysiol 74:802–815

    PubMed  CAS  Google Scholar 

  • Elsinger CL, Rao SM, Zimbelman JL, Reynolds NC, Blindauer KA, Hoffmann RG (2003) Neural basis for impaired time reproduction in Parkinson’s disease: an fMRI study. J Int Neuropsy Soc 9:1088–1098

    Google Scholar 

  • Friston KJ, Holmes AP, Worsley KJ, Poline JB, Frith CD, Frackowiak RSJ (1995) Statistical parametric maps in functional imaging: a general linear approach. Hum Brain Map 2:189

    Article  Google Scholar 

  • Friston KJ, Fletcher PC, Josephs O, Holmes AP, Rugg MD, Turner R (1998) Event-related fMRI: characterizing differential responses. NeuroImage 7:30

    Article  PubMed  CAS  Google Scholar 

  • Gibbon J, Malapani C, Dale CL, Gallistel CR (1997) Toward a neurobiology of temporal cognition: advances and challenges. Curr Opin Neurobiol 7:170–184

    Article  PubMed  CAS  Google Scholar 

  • Hadjikhani N, Liu AK, Dale AM, Cavanagh P, Tootell RBH (1998) Retinotopy and color sensitivity in human visual cortical area V8. Nat Neurosci 1:235–241

    Article  PubMed  CAS  Google Scholar 

  • Halsband U, Ito N, Tanji J, Freund HJ (1993) The role of premotor cortex and the supplementary motor area in the temporal control of movement in man. Brain 116:243–246

    Article  PubMed  Google Scholar 

  • Harrington DL, Haaland KY (1999) Neural underpinnings of temporal processing: a review of focal lesion, pharmacological, and functional imaging research. Rev Neurosci 10:91–116

    PubMed  CAS  Google Scholar 

  • Harrington DL, Boyd LA, Mayer AR, Sheltraw DM, Lee RR, Huang M, Rao SM (2004) Neural representation of interval encoding and decision making. Cogn Brain Res 21:193–205

    Article  Google Scholar 

  • Hinton SC, Meck WH (2004) Fronto-striatal circuitry activated by human peak-interval timing in the supra-seconds range. Cogn Brain Res 21:171–182

    Article  Google Scholar 

  • Hinton SC, Harrington DL, Binder JR, Durgerian S, Rao SM (2004) Neural systems supporting timing and chronometric counting: an fMRI study. Cogn Brain Res 21:183–192

    Article  Google Scholar 

  • Ivry RB, Spencer RMC (2004) The neural representation of time. Curr Opin Neurobiol 14:225–232

    Article  PubMed  CAS  Google Scholar 

  • Jäncke L, Shah NJ, Peters M (2000) Cortical activations in primary and secondary motor areas for complex bimanual movements in professional pianists. Cogn Brain Res 10:177–183

    Article  Google Scholar 

  • Jantzen KJ, Steinberg FL, Kelso JAS (2002) Practice-dependent modulation of neural activity during human sensorimotor coordination: a functional magnetic resonance imaging study. Neurosci Lett 332:205–209

    Article  PubMed  CAS  Google Scholar 

  • Josephs O, Turner R, Friston KJ (1997) Event-related fMRI. Hum Brain Mapping 5:243

    Article  Google Scholar 

  • Kawashima R, Okuda J, Umetsu A, Sugiura M, Inoue K, Suzuki K, Tabuchi M, Tsukiura T, Narayan SL, Nagasaka T, Yanagawa I, Fujii T, Takahashi S, Fukuda H, Yamadori A (2000) Human cerebellum plays an important role in memory-timed finger movement: an fMRI study. J Neurophysiol 83:1079–1087

    PubMed  CAS  Google Scholar 

  • Kudo K, Miyazaki M, Kimura T, Yamanaka K, Kadota H, Hirashima M, Nakajima Y, Nakazawa K, Ohtsuki T (2004) Selective activation and deactivation of the human brain structures between speeded and precisely timed tapping responses to identical visual stimulus: an fMRI study. NeuroImage 22:1291–1301

    Article  PubMed  Google Scholar 

  • Kuhtz-Buschbeck JP, Ehrsson HH, Forssberg H (2001) Human brain activity in the control of fine static precision grip forces: an fMRI study. Eur J Neurosci 14:382–390

    Article  PubMed  CAS  Google Scholar 

  • Lang W, Obrig H, Lindinger G, Cheyne D, Deecke L (1990) Supplementary motor area activation while tapping bimanually different rhythms in musicians. Exp Brain Res 79:504–514

    Article  PubMed  CAS  Google Scholar 

  • Lewis PA, Miall RC (2003a) Distinct systems for automatic and cognitively controlled time measurement: evidence from neuroimaging. Curr Opin Neurobiol 13:1–6

    Article  Google Scholar 

  • Lewis PA, Miall RC (2003b) Brain activation patterns during measurement of sub-and supra-second intervals. Neuropsychologia 41:1583–1592

    Article  CAS  Google Scholar 

  • Lewis PA, Wing AM, Pope PA, Praamstra P, Miall RC (2004) Brain activity correlates differentially with increasing temporal complexity of rhythms during initialisation, synchronization, and continuation phases of paced finger tapping. Neuropsychologia 42:1301–1312

    Article  PubMed  CAS  Google Scholar 

  • Macar F, Vidal F (2004) Event-related potentials as indices of time processing: a review. J Psychophysiol 18(2–3):89–104

    Article  Google Scholar 

  • Macar F, Grondin S, Casini L (1994) Controlled attention sharing influences time estimation. Mem Cogn 22(6):673–686

    CAS  Google Scholar 

  • Macar F, Lejeune H, Bonnet M, Ferrara A, Pouthas V, Vidal F, Maquet P (2002) Activation of the supplementary motor area and of attentional networks during temporal processing. Exp Brain Res 142:539–550

    Article  Google Scholar 

  • Macar F, Anton J-L, Bonnet M, Vidal F (2004) Timing functions of the supplementary motor area: an event-related fMRI study. Cogn Brain Res 21(2):206–215

    Article  Google Scholar 

  • Mathiak K, Hertrich I, Grodd W, Ackermann H (2004) Discrimination of temporal information at the cerebellum: functional magnetic resonance imaging of nonverbal auditory memory. NeuroImage 21:154–162

    Article  PubMed  Google Scholar 

  • Mayville JM, Jantzen KJ, Fuchs A, Steinberg FL, Kelso JAS (2002) Cortical and subcortical networks underlying syncopated and synchronized coordination revealed using fMRI. Hum Brain Mapping 17(4):214–229

    Article  Google Scholar 

  • Meck WM (1996) Neuropharmacology of timing and time perception. Cogn Brain Res 3:227–242

    Article  CAS  Google Scholar 

  • Picard N, Strick PL (1996) Motor areas of the medial wall: a review of their location and functional activation. Cerebr Cortex 6:342–353

    Article  CAS  Google Scholar 

  • Rao SM, Harrington DL, Haaland KY, Bobholz JA, Cox RW, Binder JR (1997) Distributed neural systems underlying the timing of movements. J Neurosci 17:5528–5535

    PubMed  CAS  Google Scholar 

  • Rao SM, Mayer AR, Harrington DL (2001) The evolution of brain activation during temporal processing. Nat Neurosci 4:317–323

    Article  PubMed  CAS  Google Scholar 

  • Rubia K, Overmeyer S, Taylor E, Brammer M, Williams S, Simmons A, Andrew C, Bullmore E (1998) Prefrontal involvement in “temporal bridging” and timing movement. Neuropsychologia 36:1283–1293

    Article  PubMed  CAS  Google Scholar 

  • Sergent J, Zuck E, Terriah S, MacDonald B (1992) Distributed neural network underlying musical sight-reading and keyboard performance. Science 257:106–109

    Article  PubMed  CAS  Google Scholar 

  • Smith A, Taylor E, Lidzba K, Rubia K (2003) A right hemispheric frontocerebellar network for time discrimination of several hundreds of milliseconds. NeuroImage 20:344–350

    Article  PubMed  Google Scholar 

  • Tanji J (1994) The supplementary motor area in the cerebral cortex. Neurosci Res 19:251–268

    Article  PubMed  CAS  Google Scholar 

  • Thomas EAC, Weaver WB (1975) Cognitive processing and time perception. Percept Psychoph 17:363–367

    Google Scholar 

  • Zakay D (1989) Subjective time and attentional resource allocation. An integrated model of time estimation. In: Levin I, Zakay D (eds) Time and human cognition: a life span perspective. North Holland, Amsterdam, pp 365–397

  • Zeki S, Watson JD, Lueck CJ, Friston KJ, Kennard C, Frackowiak RS (1991) A direct demonstration of functional specialization in human visual cortex. J Neurosci 11:641–649

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Françoise Macar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Macar, F., Coull, J. & Vidal, F. The supplementary motor area in motor and perceptual time processing: fMRI studies. Cogn Process 7, 89–94 (2006). https://doi.org/10.1007/s10339-005-0025-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10339-005-0025-7

Keywords

Navigation