Cognitive Processing

, Volume 5, Issue 2, pp 94–105 | Cite as

The body schema and multisensory representation(s) of peripersonal space

  • Nicholas P. HolmesEmail author
  • Charles Spence
Research Report


To guide the movement of the body through space, the brain must constantly monitor the position and movement of the body in relation to nearby objects. The effective piloting of the body to avoid or manipulate objects in pursuit of behavioural goals requires an integrated neural representation of the body (the ‘body schema’) and of the space around the body (‘peripersonal space’). In the review that follows, we describe and evaluate recent results from neurophysiology, neuropsychology, and psychophysics in both human and non-human primates that support the existence of an integrated representation of visual, somatosensory, and auditory peripersonal space. Such a representation involves primarily visual, somatosensory, and proprioceptive modalities, operates in body-part-centred reference frames, and demonstrates significant plasticity. Recent research shows that the use of tools, the viewing of one’s body or body parts in mirrors, and in video monitors, may also modulate the visuotactile representation of peripersonal space.


Peripersonal space Fronto-parietal Visuotactile Tool use 



N.P. Holmes is supported by a Wellcome Prize Studentship (number 065696/Z/01/A) from The Wellcome Trust.


  1. Austen EL, Soto-Faraco S, Pinel JPJ, Kingstone AF (2001) Virtual body effect: factors influencing visual-tactile integration. Abstracts Psychon Soc 6:2Google Scholar
  2. Berlucchi G, Aglioti SA (1997) The body in the brain: neural bases of corporeal awareness. Trends Neurosci 20:560–564PubMedGoogle Scholar
  3. Berti A, Frassinetti F (2000) When far becomes near: re-mapping of space by tool-use. J Cogn Neurosci 12:415–420CrossRefPubMedGoogle Scholar
  4. Bonnier P (1905) L’Aschématie [Aschematia]. Rev Neurol 13:606–609Google Scholar
  5. Botvinick M, Cohen J (1998) Rubber hands ‘feel’ touch that eyes see. Nature 391:756PubMedGoogle Scholar
  6. Bermúdez JL, Marcel AJ, Eilan N (eds) (2003) The body and the self. MIT Press, Cambridge, Mass.Google Scholar
  7. Chapman CE, Spidalieri G, Lamarre Y (1984) Discharge properties of area 5 neurones during arm movements triggered by sensory stimuli in the monkey. Brain Res 309:63–77CrossRefPubMedGoogle Scholar
  8. Cohen YE, Andersen RA (2002) A common reference frame for movement plans in the posterior parietal cortex. Nat Rev Neurosci 3:553–562CrossRefPubMedGoogle Scholar
  9. Colby CL, Duhamel J (1991) Heterogeneity of extrastriate visual areas and multiple parietal areas in the macaque monkey. Neuropsychologia 29:517–537PubMedGoogle Scholar
  10. Craig JC, Rollman GB (1999) Somesthesis. Annu Rev Psychol 50:305–331CrossRefPubMedGoogle Scholar
  11. di Pellegrino G, Frassinetti F (2000) Direct evidence from parietal extinction of enhancement of visual attention near a visible hand. Curr Biol 10:1475–1477PubMedGoogle Scholar
  12. di Pellegrino G, Làdavas E, Farnè A (1997) Seeing where your hands are. Nature 388:730PubMedGoogle Scholar
  13. Farnè A, Demattè ML, Làdavas E (2003) Beyond the window: multisensory representation of peripersonal space across a transparent barrier. Int J Psychophysiol 50:51–61CrossRefPubMedGoogle Scholar
  14. Farnè A, Làdavas E (2000) Dynamic size-change of hand peripersonal space following tool use. Neuroreport 11:1645–1649PubMedGoogle Scholar
  15. Farnè A, Làdavas E (2002) Auditory peripersonal space in humans. J Cogn Neurosci 14:1030–1043CrossRefPubMedGoogle Scholar
  16. Farnè A, Pavani F, Meneghello F, Làdavas E (2000) Left tactile extinction following visual stimulation of a rubber hand. Brain 123:2350–2360CrossRefPubMedGoogle Scholar
  17. Fogassi L, Gallese V, Fadiga L, Luppino G, Matelli M, Rizzolatti G (1996) Coding of peripersonal space in inferior premotor cortex (area F4). J Neurophysiol 76:141–157PubMedGoogle Scholar
  18. Graziano MSA (1999) Where is my arm? The relative role of vision and proprioception in the neuronal representation of limb position. Proc Natl Acad Sci U S A 96:10418–10421PubMedGoogle Scholar
  19. Graziano MSA, Gross CG (1993) A bimodal map of space: somatosensory receptive fields in the macaque putamen with corresponding visual receptive fields. Exp Brain Res 97:96–109PubMedGoogle Scholar
  20. Graziano MSA, Gross CG (1995) The representation of extrapersonal space: a possible role for bimodal, visual-tactile neurons. In: Gazzaniga MS (ed) The cognitive neurosciences. MIT Press, Cambridge, pp 1021–1034Google Scholar
  21. Graziano MSA, Yap GS, Gross CG (1994) Coding of visual space by premotor neurons. Science 266:1054–1057PubMedGoogle Scholar
  22. Graziano MSA, Hu XT, Gross CG (1997a) Coding the locations of objects in the dark. Science 277:239–241PubMedGoogle Scholar
  23. Graziano MSA, Hu XT, Gross CG (1997b) Visuospatial properties of ventral premotor cortex. J Neurophysiol 77:2268–2292PubMedGoogle Scholar
  24. Graziano MSA, Reiss LA, Gross CG (1999) A neuronal representation of the location of nearby sounds. Nature 397:428–430PubMedGoogle Scholar
  25. Graziano MSA, Cooke DF, Taylor CSR (2000) Coding the location of the arm by sight. Science 290:1782–1786PubMedGoogle Scholar
  26. Graziano MSA, Taylor CSR, Moore T (2002) Complex movements evoked by microstimulation of precentral cortex. Neuron 34:841–851Google Scholar
  27. Haggard P, Taylor-Clarke M, Kennett S (2003) Tactile perception, cortical representation and the bodily self. Curr Biol 13:170–173CrossRefGoogle Scholar
  28. Halligan PW, Marshall JC (1991) Left neglect for near but not far space in man. Nature 350:498–500PubMedGoogle Scholar
  29. Halligan PW, Hunt M, Marshall JC, Wade DT (1996) When seeing is feeling: acquired synaesthesia or phantom touch? Neurocase 2:21–29Google Scholar
  30. Head H, Holmes HG (1911–1912) Sensory disturbances from cerebral lesions. Brain 34:102–254Google Scholar
  31. Held R, Durlach N (1993) Telepresence, time delay and adaptation. In: Ellis SR, Kaiser MK, Grunwald AC (eds) Pictorial communication in virtual and real environments. Taylor & Francis, London, pp 232–246Google Scholar
  32. Hoover RE (1950) The cane as a travel aid. In: Zahl PA (ed) Blindness. Princeton University Press, Princeton, pp 353–365Google Scholar
  33. Iriki A, Tanaka M, Iwamura Y (1996a) Coding of modified body schema during tool use by macaque postcentral neurones. Neuroreport 7:2325–2330PubMedGoogle Scholar
  34. Iriki A, Tanaka M, Iwamura Y (1996b) Attention-induced neuronal activity in the monkey somatosensory cortex revealed by pupillometrics. Neurosci Res 25:173–181PubMedGoogle Scholar
  35. Iriki A, Tanaka M, Obayashi S, Iwamura Y (2001) Self-images in the video monitor coded by monkey intraparietal neurons. Neurosci Res 40:163–175CrossRefPubMedGoogle Scholar
  36. Kalaska JF, Cohen DAD, Prud’homme M, Hyde ML (1990) Parietal area 5 neuronal activity encodes movement kinetics, not movement dynamics. Exp Brain Res 80:351–364PubMedGoogle Scholar
  37. King AJ (1999) Sensory experience and the formation of a computational map of auditory space in the brain. Bioessays 21:900–911CrossRefPubMedGoogle Scholar
  38. Làdavas E (2002) Functional and dynamic properties of visual peripersonal space. Trends Cogn Sci 6:17–22CrossRefPubMedGoogle Scholar
  39. Làdavas E, di Pellegrino G, Farnè A, Zeloni G (1998) Neuropsychological evidence of an integrated visuotactile representation of peripersonal space in humans. J Cogn Neurosci 10:581–589PubMedGoogle Scholar
  40. Làdavas E, Farnè A, Zeloni G, di Pellegrino G (2000) Seeing or not seeing where your hands are. Exp Brain Res 131:458–467PubMedGoogle Scholar
  41. Làdavas E, Pavani F, Farnè A (2001) Auditory peripersonal space in humans: a case of auditory-tactile extinction. Neurocase 7:97–103PubMedGoogle Scholar
  42. Làdavas E, Zeloni G, Farnè A (1998) Visual peripersonal space centred on the face in humans. Brain 121:2317–2326PubMedGoogle Scholar
  43. MacKay WA, Crammond DJ (1987) Neuronal correlates in posterior parietal lobe of the expectation of events. Behav Brain Res 24:167–179CrossRefPubMedGoogle Scholar
  44. Maravita A, Husain M, Clarke K, Driver J (2001) Reaching with a tool extends visual-tactile interactions into far space: evidence from cross-modal extinction. Neuropsychologia 39:580–585CrossRefPubMedGoogle Scholar
  45. Maravita A, Spence C, Clarke K, Husain M, Driver J (2000) Vision and touch through the looking glass in a case of crossmodal extinction. Neuroreport 11:3521–3526PubMedGoogle Scholar
  46. Maravita A, Spence C, Kennett S, Driver J (2002a) Tool-use changes multimodal spatial interactions between vision and touch in normal humans. Cognition 83:25–34CrossRefGoogle Scholar
  47. Maravita A, Spence C, Sergent C, Driver J (2002b) Seeing your own touched hands in a mirror modulates cross-modal interactions. Psychol Sci 13:350–355CrossRefPubMedGoogle Scholar
  48. Mattingley JB, Driver J, Beschin N, Robertson IH (1997) Attentional competition between modalities: extinction between touch and vision after right hemisphere damage. Neuropsychologia 35:867–880PubMedGoogle Scholar
  49. Moll L, Kuypers HGJM (1977) Premotor cortex ablations in monkeys: contralateral changes in visually guided reaching behavior. Science 198:317–319PubMedGoogle Scholar
  50. Mountcastle VB, Lynch JC, Georgopoulos AP, Sakata H, Acuna C (1975) Posterior parietal association cortex of the monkey: command functions for operation within extrapersonal space. J Neurophysiol 38:871–908PubMedGoogle Scholar
  51. Nielsen TI (1963) Volition: a new experimental approach. Scand J Psychol 4:225–230Google Scholar
  52. Obayashi S, Tanaka M, Iriki A (2000) Subjective image of invisible hand coded by monkey intraparietal neurons. Neuroreport 11:3499–3505PubMedGoogle Scholar
  53. Pavani F, Spence C, Driver J (2000) Visual capture of touch: out-of-the-body experiences with rubber gloves. Psychol Sci 11:353–359PubMedGoogle Scholar
  54. Popper KR, Eccles JC (1977) The self and its brain. Springer, London Berlin HeidelbergGoogle Scholar
  55. Previc FH (1998) The neuropsychology of 3-D space. Psychol Bull 124:123–164PubMedGoogle Scholar
  56. Ramachandran VS, Rogers-Ramachandran D (1996) Synaesthesia in phantom limbs induced with mirrors. Proc R Soc Lond B Biol Sci 263:377–386PubMedGoogle Scholar
  57. Ramachandran VS, Rogers-Ramachandran D, Cobb S (1995) Touching the phantom limb. Nature 377:489–490CrossRefPubMedGoogle Scholar
  58. Rizzolatti G, Fadiga L, Gallese V, Fogassi L (1996) Premotor cortex and the recognition of motor actions. Cogn Brain Res 3:131–141Google Scholar
  59. Rizzolatti G, Fadiga L, Fogassi L, Gallese V (1997) The space around us. Science 277:190–191CrossRefPubMedGoogle Scholar
  60. Rizzolatti G, Luppino G, Matelli M (1998) The organization of the cortical motor system: new concepts. Electroencephalogr Clin Neurophysiol 106:283–296PubMedGoogle Scholar
  61. Rorden C, Heutink J, Greenfield E, Robertson IH (1999) When a rubber hand ’feels’ what the real hand cannot. Neuroreport 10:135–138PubMedGoogle Scholar
  62. Sathian K, Greenspan AI, Wolf SL (2000) Doing it with mirrors: a case study of a novel approach to neurorehabilitation. Neurorehabil Neural Repair 14:73–76PubMedGoogle Scholar
  63. Schilder PF (1935) The image and appearance of the human body: studies in the constructive energies of the psyche. Kegan Paul, OxfordGoogle Scholar
  64. Spence C, Pavani F, Maravita A, Holmes NP (2004) Multisensory contributions to the 3-D representation of visuotactile peripersonal space in humans: evidence from the crossmodal congruency task. J Physiol (in press)Google Scholar

Copyright information

© Marta Olivetti Belardinelli and Springer-Verlag 2004

Authors and Affiliations

  1. 1.Department of Experimental PsychologyUniversity of OxfordOxfordUK

Personalised recommendations