Advertisement

Acta Mechanica Solida Sinica

, Volume 32, Issue 6, pp 754–766 | Cite as

A Gradient Model for Young’s Modulus and Surface Electrode Resistance of Ionic Polymer–Metal Composite

  • H. G. Liu
  • K. XiongEmail author
  • M. Wang
Article
  • 54 Downloads

Abstract

A new model is proposed to estimate Young’s modulus and surface electrode resistance of the ionic polymer–metal composite (IPMC) with a gradient distribution of microstructure. The entire IPMC electrode is divided into two parts, i.e., the porous metal electrode and the gradient polymer–metal composite electrode, according to the geometric properties of the electroless plated metal electrode. The validity and accuracy of the model are justified by comparing with the experimental observations of IPMC samples. The differences between model predictions and experimental data of Young’s modulus and surface resistance of IPMC samples are +6.8% and –5.5%, respectively, indicating a reasonably good agreement.

Keywords

Ionic polymer–metal composite Gradient electrode model Young’s modulus Resistance 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China [Grant Nos. 11372132 and 11502109].

References

  1. 1.
    Jia X, Li M, Zhou J. Modeling contacts of ionic polymer metal composites based tactile sensors. Acta Mech Solida Sin. 2014;27(4):407–11.Google Scholar
  2. 2.
    Luca VD, Digiamberardino P, Pasquale GD, et al. Ionic electroactive polymer metal composites: fabricating, modeling, and applications of postsilicon smart devices. J Polym Sci Pol Phys. 2013;51(9):699–734.Google Scholar
  3. 3.
    Shahinpoor M, Kim KJ. Ionic polymer-metal composites: IV. Industrial and medical applications. Smart Mater Struct. 2005;14(1):197–214.Google Scholar
  4. 4.
    Colozza A. Fly like a bird. IEEE Spectr. 2007;44(5):38–43.Google Scholar
  5. 5.
    Jain RK, Datta S, Majumder S. Design and control of an IPMC artificial muscle finger for micro gripper using EMG signal. Mechatronics. 2013;23(3):381–94.Google Scholar
  6. 6.
    Jain RK, Majumder S, Datta S. SCARA based peg-in-hole assembly using compliant IPMC based micro gripper. Robot Auton Syst. 2013;61(3):297–311.Google Scholar
  7. 7.
    Aurelil M, Kopman V, Porfiri M. Free-locomotion of underwater vehicles actuated by ionic polymer metal composites. IEEE-ASME T Mech. 2010;15(4):603–14.Google Scholar
  8. 8.
    Abdelnour K, Stinchcombe A, Porfiri M. Wrieless powering of ionic polymer metal composites toward hovering microswimmers. IEEE-ASME T Mech. 2012;17(5):924–34.Google Scholar
  9. 9.
    Najem J, Sarles S, Akle B, et al. Biomimetic jellyfish-inspired underwater vehicle actuated by ionic polymer metal composite actuators. Smart Mater Struct. 2012;21(9):094026.Google Scholar
  10. 10.
    Moghadam AAA, Kouzani A, Shanippor M. Development of a novel soft parallel robot equipped with polymeric artificial muscles. Smart Mater Struct. 2015;24(3):035017.Google Scholar
  11. 11.
    Aw KC, McDaid AJ. Bio-applications of ionic polymer metal composite transducers. Smart Mater Struct. 2014;23(7):074005.Google Scholar
  12. 12.
    Bar-Cohen Y. Electroactive polymer (EAP) actuator as artificial muscle: reality, potential, and challenges. Bellinghan: SPIE Press; 2004.Google Scholar
  13. 13.
    Moeinkhah H, Rezaeepazhand J, Akbarzadeh A. Analytical dynamic modeling of a cantilever IPMC actuator based on a distributed electrical circuit. Smart Mater Struct. 2013;22(5):055033.Google Scholar
  14. 14.
    De-Gennes PG, Okumura K, Shahinpoor M. Mechanoelectric effects in ionic gels. Europhys Lett. 2000;50(4):513–8.Google Scholar
  15. 15.
    Nemat-Nasser S, Li JY. Electromechanical response of ionic polymer-metal composites. J Appl Phys. 2000;87(7):3321–31.Google Scholar
  16. 16.
    Nemat-Nasser S. Micro-mechanics of actuation of ionic polymer-metal composites. J Appl Phys. 2002;92(5):2899–915.Google Scholar
  17. 17.
    Shahinpoor M, Kim KJ. Mass transfer induced hydraulic actuation in ionic polymer-metal composites. J Int Mater Syst Struct. 2002;13(6):369–76.Google Scholar
  18. 18.
    Tamagawa H, Goto S, Sugiyama T. Bending direction of Ag-plated IPMC containing immobile anions and/or cations. Compos Sci Technol. 2008;68(15):3412–7.Google Scholar
  19. 19.
    Choonghee J, Pugal D, Oh IK, et al. Recent advances in ionic polymer-metal composite actuators and their modeling and applications. Prog Polym Sci. 2013;38(7):1037–66.Google Scholar
  20. 20.
    Shahinpoor M, Bar-Cohen Y, Simpson JO. Ionic polymer-metal composites (IPMCs) as biomimetic sensors, actuators and artificial muscles-a review. Smart Mater Struct. 1998;7(6):R15–30.Google Scholar
  21. 21.
    Shahinpoor M, Kim KJ. Ionic polymer-metal composites: I. Fundamentals. Smart Mater Struct. 2001;10(4):819–33.Google Scholar
  22. 22.
    Kim KJ, Shahinpoor M. Ionic polymer-metal composites: II. Manufacturing technique. Smart Mater Struct. 2003;12(1):65–79.Google Scholar
  23. 23.
    Akle BJ, Bennett MD, Leo D, et al. Direct assembly process: a novel fabrication technique for large strain ionic polymer transducers. J Mater Sci. 2007;40(16):7031–41.Google Scholar
  24. 24.
    Bian K, Xiong K, Liu G, et al. Preparation and dynamic displacement testing of ionic polymer metal composites with platinum as electrodes. Acta Mater Compos Sin. 2011;28(3):115–20 (in Chinese).Google Scholar
  25. 25.
    Kim SJ, Kim SM, Kim KJ, et al. An electrode model for ionic polymer-metal composites. Smart Mater Struct. 2007;16(6):2286–95.Google Scholar
  26. 26.
    Tiwari R, Kim KJ. Effect of metal diffusion on mechanoelectric property of ionic polymer-metal composite. Appl Phys Lett. 2010;97(24):244104.Google Scholar
  27. 27.
    Cha Y, Aureli M, Porfiri M. A physics-based model of the electrical impedance of ionic polymer metal composites. J Appl Phys. 2012;111(12):124901.Google Scholar
  28. 28.
    Wang Y, Zhu Z, Chen H, et al. Effects of preparation steps on the physical parameters and electromechanical properties of IPMC actuators. Smart Mater Struct. 2014;23(12):125015.Google Scholar
  29. 29.
    Kloke A, Stetten F, Zengerle R, et al. Strategies for the fabrication of porous platinum electrodes. Adv Mater. 2011;23(43):4976–5008.Google Scholar
  30. 30.
    Lee S, Park HC, Kim KJ. Equivalent modeling for ionic polymer-metal composite actuators based on beam theories. Smart Mater Struct. 2005;14(6):1363–8.Google Scholar
  31. 31.
    Eshelby JD. The determination of the elastic field of an ellipsoidal inclusion and related problems. Proc R Soc Lond A. 1957;241(1226):376–96.MathSciNetzbMATHGoogle Scholar
  32. 32.
    Wu TT. The effect of inclusion shape on the elastic moduli of a two-phase material. Int J Solids Struct. 1966;2(1):1–8.Google Scholar
  33. 33.
    Pabst W, Gregorová E. Young’s modulus of isotropic porous materials with spheroidal pores. J Eur Ceram Soc. 2014;34(13):3195–207.Google Scholar
  34. 34.
    Pabst W, Gregorová E. Mooney-type relation for the porosity dependence of the effective tensile modulus of ceramics. J Mater Sci. 2004;39(9):3213–5.Google Scholar
  35. 35.
    Mori T, Tanaka K. Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metall. 1973;21(5):571–4.Google Scholar
  36. 36.
    Shen Q, Kim KJ, Wang T. Electrode of ionic polymer-metal composite sensors: modeling and experimental investigation. J Appl Phys. 2014;115(19):194902.Google Scholar
  37. 37.
    Langlois S, Coeuret F. Flow-through and flow-by porous electrodes of nickel foam. I. Material characterization. J Appl Electrochem. 1989;19(1):43–50.Google Scholar
  38. 38.
    Huang P. Powder metallurgy principle. 2nd ed. Beijing: Metallurgical Industry Press; 1997. p. 391–2 (in Chinese).Google Scholar
  39. 39.
    Liu H, Xiong K, Wang M, et al. Experimental study on strain distribution of ionic polymer-metal composite actuator using digital image correlation. Smart Mater Struct. 2017;26(2):025004.Google Scholar
  40. 40.
    Collins TJ. ImageJ for microscopy. Biotechniques. 2007;43(1):25–30.MathSciNetGoogle Scholar
  41. 41.
    Liang Y, Qiu G, Xiao, J, et al. Effect of the porosity on compressive properties of porous materials.  https://doi.org/10.1002/9781118889879.ch55.Google Scholar

Copyright information

© The Chinese Society of Theoretical and Applied Mechanics 2019

Authors and Affiliations

  1. 1.Faculty of Civil Engineering and MechanicsJiangsu UniversityZhenjiangChina
  2. 2.State Key Laboratory of Mechanics and Control of Mechanical StructuresNanjing University of Aeronautics and AstronauticsNanjingChina

Personalised recommendations