Advertisement

Acta Mechanica Solida Sinica

, Volume 32, Issue 3, pp 339–355 | Cite as

Fracture Toughnesses and Crack Growth Angles of Single-Layer Graphyne Sheets

  • Zonghuiyi Jiang
  • Rong Lin
  • Junhua ZhaoEmail author
Article
  • 97 Downloads

Abstract

Recently, Shang et al. (Angew Chem Int Ed 57(3):774–778, 2018) have developed a method to synthesize ultrathin (around 1.9 nm) graphyne nanosheets. We reported here the mixed-mode I–II fracture toughnesses and crack growth angles of single-layer graphyne sheets using molecular dynamics (MD) simulations and the finite element (FE) method based on the boundary layer model, respectively. The various carbon–carbon bonds of graphyne sheets in the FE method are equated with the nonlinear Timoshenko beams based on the Tersoff–Brenner potential, where all the parameters of the nonlinear beams are completely determined based on the continuum modeling. All the results from the present FE method are reasonable in comparison with those from our MD simulations using the REBO potential. The present results show that both the critical stress intensity factors (SIFs) and the crack growth angle strongly depend on the chirality and loading angle \(\varphi \) (\(\varphi =90^{\circ }\) and \(\varphi =0^{\circ }\) representing pure mode I and pure mode II, respectively). Meanwhile, the fracture properties of single-layer cyclicgraphene and supergraphene sheets are also studied in order to compare with those of the graphyne sheets. The critical equivalent SIFs are derived as \(1.55<K_{{\text {eq-cy}}}\) (cyclic) \(<1.95\) nN Å\(^{-3/2}\), \(1.64<K_{{\text {eq-gy}}}\) (graphyne) \(<2.64\) nN Å\(^{-3/2}\) and \(0.61<K_{{\text {eq-su}}}\) (super)\(<2.04\) nN Å\(^{-3/2}\) in the corresponding zigzag and armchair sheets using the MD simulations, while the SIFs are \(0.32<K_{{\text {eq-cy}}}\) (cyclic) \(<0.48\) nN Å\(^{-3/2}\), \(1.96<K_{{\text {eq-gy}}}\) (graphyne) \(<2.49\) nN Å\(^{-3/2}\) and \(1.42<K_{{\text {eq-su}}}\) (super) \(<2.95\) nN Å\(^{-3/2}\) using the FE method. These findings should be of great help for understanding the fracture properties of carbon allotropes and designing the carbon-based nanodevices.

Keywords

Fracture toughness Graphyne Molecular dynamics Finite element 

Notes

Acknowledgements

We gratefully acknowledge supports from the National Natural Science Foundation of China (Grant Nos. 11572140 and 11602096), the Natural Science Foundation of Jiangsu Province (Grant No. BK20180031, BK20160158), the National First-Class Discipline Program of Food Science and Technology (Grant No. JUFSTR20180205), the 111 Project (Grant No. B18027), the Programs of Innovation and Entrepreneurship of Jiangsu Province, Primary Research and Development Plan of Jiangsu Province (Grant No. BE2017069), Science and Technology Plan Project of Wuxi, the Fundamental Research Funds for the Central Universities (Grant Nos. JUSRP11529 and JG2015059), Postgraduate Research and Practice Innovation Program of Jiangsu Province (Grant No. KYCX17_1473), Research Project of State Key Laboratory of Mechanical System and Vibration (MSV201909), the Project of Jiangsu Provincial Six Talent Peaks in Jiangsu Province and the Thousand Youth Talents Plan.

References

  1. 1.
    Hirsch A. The era of carbon allotropes. Nat Mater. 2010;9(11):868–71.CrossRefGoogle Scholar
  2. 2.
    Diederich F, Rubin Y. Synthetic approaches toward molecular and polymeric carbon allotropes. Cheminform. 1992;31(9):1101–23.Google Scholar
  3. 3.
    Cranford SW, Buehler MJ. Mechanical properties of graphyne. Carbon. 2011;49(13):4111–21.CrossRefGoogle Scholar
  4. 4.
    Li Y, Xu L, Liu H, Li Y. ChemInform abstract: graphdiyne and graphyne: from theoretical predictions to practical construction. Chem Soc Rev. 2014;43(8):2572–86.CrossRefGoogle Scholar
  5. 5.
    Irifune T, Kurio A, Sakamoto S, et al. Materials: ultrahard polycrystalline diamond from graphite. Nature. 2003;421(6923):599–600.CrossRefGoogle Scholar
  6. 6.
    Thompson BC, Frechet JMJ. Polymer-fullerene composite solar cells. Angew Chem Int Ed. 2008;47(1):58–77.CrossRefGoogle Scholar
  7. 7.
    Baughman RH, Zakhidov AA, de Heer WA. Carbon nanotubes—the route toward applications. Science. 2002;297(5582):787–92.CrossRefGoogle Scholar
  8. 8.
    Iijima S, Ichihashi T. Single-shell carbon nanotubes of 1-nm diameter. Nature. 1993;363(6430):603–5.CrossRefGoogle Scholar
  9. 9.
    Li C, Chou TW. Elastic properties of single-walled carbon nanotubes in transverse directions. Phys Rev B Condens Matter. 2004;69(7):428–33.CrossRefGoogle Scholar
  10. 10.
    Allen MJ, Tung VC, Kaner RB. Honeycomb carbon: a review of graphene. Chem Rev. 2010;110(1):132.CrossRefGoogle Scholar
  11. 11.
    Zhang Z, Guo W. Energy-gap modulation of BN ribbons by transverse electric fields: first-principles calculations. Phys Rev B Condens Matter. 2008;77(7):439–46.Google Scholar
  12. 12.
    Li C, Chou TW. A structural mechanics approach for the analysis of carbon nanotubes. Int J Solids Struct. 2003;40(10):2487–99.zbMATHCrossRefGoogle Scholar
  13. 13.
    Chang T, Gao H. Size-dependent elastic properties of a single-walled carbon nanotube via a molecular mechanics model. J Mech Phys Solids. 2003;51(6):1059–74.zbMATHCrossRefGoogle Scholar
  14. 14.
    Zhao J, Wei N, Fan Z, Rabczuk T. The mechanical properties of three types of carbon allotropes. Nanotechnology. 2013;24(9):095702.CrossRefGoogle Scholar
  15. 15.
    Li G, Li Y, Liu H, Guo Y, Li Y, Zhu D. Architecture of graphdiyne nanoscale films. Chem Commun. 2010;46(19):3256–8.CrossRefGoogle Scholar
  16. 16.
    Shang H, Zuo Z, Li L, Wang F, Liu H, Li Y, Li Y. Ultrathin graphdiyne nanosheets grown in situ on copper nanowires and their performance as lithium-ion battery anodes. Angew Chem Int Ed. 2018;57(3):774–8.CrossRefGoogle Scholar
  17. 17.
    Williams ML. On the stress distribution at the base of a stationary crack. J Appl Mech. 1957;24:109–14.MathSciNetzbMATHGoogle Scholar
  18. 18.
    Authier A. International tables for crystallography: Volume D: Physical properties of crystals. 2nd ed. Wiley; 2014. p. 1245–54.Google Scholar
  19. 19.
    Enyashin AN, Ivanovskii AL. Graphene allotropes: stability, structural and electronic properties from DF–TB calculations. Phys Status Solidi. 2011;248:1879–83.CrossRefGoogle Scholar
  20. 20.
    Heimann RB, Evsvukov SE, Koga Y. Carbon allotropes: a suggested classification scheme based on valence orbital hybridization. Carbon. 1997;35(10–11):1654–8.CrossRefGoogle Scholar
  21. 21.
    Plimpton S. Fast parallel algorithms for short-range molecular dynamics. J Comput Phys. 1995;117(1):1–19.zbMATHCrossRefGoogle Scholar
  22. 22.
    Zhang B, Xiao H, Yang G, et al. Finite element modelling of the instability in rapid fracture of graphene. Eng Fract Mech. 2015;141:111–9.CrossRefGoogle Scholar
  23. 23.
    Tabarraei A, Wang X, Jia D. Effects of hydrogen adsorption on the fracture properties of graphene. Comput Mater Sci. 2016;121:151–8.CrossRefGoogle Scholar
  24. 24.
    Belytschko T, Xiao SP, Schatz GC, et al. Atomistic simulations of nanotube fracture. Phys Rev B Condens Matter. 2002;65(23):121.CrossRefGoogle Scholar
  25. 25.
    Grantab R, Shenoy VB, Ruoff RS. Anomalous strength characteristics of tilt grain boundaries in graphene. Science. 2010;330(6006):946–8.CrossRefGoogle Scholar
  26. 26.
    Gao H, Ji B, Jager IL, et al. Materials become insensitive to flaws at nanoscale: lessons from nature. Proc Natl Acad Sci USA. 2003;100(10):5597–600.CrossRefGoogle Scholar
  27. 27.
    Lee C, Wei X, Kysar JW, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science. 2008;321(5887):385–8.CrossRefGoogle Scholar
  28. 28.
    Nosé S. A unified formulation of the constant temperature molecular dynamics methods. J Chem Phys. 1984;81(1):511–9.CrossRefGoogle Scholar
  29. 29.
    Hoover WG. Canonical dynamics: equilibrium phase-space distributions. Phys Rev A Gen Phys. 1985;31(3):1695–7.CrossRefGoogle Scholar
  30. 30.
    Abaqus GUI. Abaqus 6.11[J]. Users Manual 6.11, 2011.Google Scholar
  31. 31.
    Scarpa F, Adhikari S, Srikantha PA. Effective elastic mechanical properties of single layer graphene sheets. Nanotechnology. 2009;20(6):065709.CrossRefGoogle Scholar
  32. 32.
    Brenner DW. Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films. Phys Rev B Condens Matter. 1990;42(15):9458–71.CrossRefGoogle Scholar
  33. 33.
    Zhang B, Yang G, Xu H. Instability of supersonic crack in graphene. Phys B Phys Condens Matter. 2014;434(1):145–8.CrossRefGoogle Scholar
  34. 34.
    Brenner DW, Shenderova OA, Harrison J, et al. A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons. J Phys Condens Matter. 2002;14(4):783–802.CrossRefGoogle Scholar
  35. 35.
    Huang Y, Wu J, Hwang KC. Thickness of graphene and single-wall carbon nanotubes. Phys Rev B. 2006;74(24):4070–9.CrossRefGoogle Scholar
  36. 36.
    Jiang Z, Lin R, Yu P, et al. The chirality-dependent fracture properties of single-layer graphene sheets: molecular dynamics simulations and finite element method. J Appl Phys. 2017;122(2):1421–32.CrossRefGoogle Scholar
  37. 37.
    Zhang B, Mei L, Xiao HF. Nanofracture in graphene under complex mechanical stresses. Appl Phys Lett. 2012;101(12):121915.CrossRefGoogle Scholar
  38. 38.
    Xu M, Tabarraei A, Paci JT, et al. A coupled quantum/continuum mechanics study of graphene fracture. Int J Fract. 2012;173(2):163–73.CrossRefGoogle Scholar
  39. 39.
    Zhang S, Zhu T, Belytschko T. Atomistic and multiscale analyses of brittle fracture in crystal lattices. Phys Rev B Condens Matter. 2007;76(9):094114.CrossRefGoogle Scholar
  40. 40.
    Hou J, Yin Z, Zhang Y, Chang TC. Structure dependent elastic properties of supergraphene. Acta Mech Sin. 2016;32:684–9.MathSciNetzbMATHCrossRefGoogle Scholar
  41. 41.
    Yin H, Qi HJ, Fan F, Zhu T, Wang B, Wei Y. Griffith criterion for brittle fracture in graphene. Nano Lett. 2015;15:1918–24.CrossRefGoogle Scholar
  42. 42.
    Wei Y, Yang R. Nanomechanics of graphene. Natl Sci Rev. 2018;0:1–25.Google Scholar

Copyright information

© The Chinese Society of Theoretical and Applied Mechanics 2019

Authors and Affiliations

  1. 1.Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment and TechnologyJiangnan UniversityWuxiChina
  2. 2.Institute of Mechanics and Advanced Materials, School of Mechanical EngineeringJiangnan UniversityWuxiChina

Personalised recommendations